
Computers and Mathematics with Applications 64 (2012) 2575–2593

Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Approximate diagonalization of variable-coefficient differential
operators through similarity transformations
James V. Lambers
Department of Mathematics, University of Southern Mississippi, 118 College Dr #5045, Hattiesburg, MS 39406-0001, USA

a r t i c l e i n f o

Article history:
Received 27 February 2012
Received in revised form 10 June 2012
Accepted 27 June 2012

Keywords:
Pseudodifferential operators
Symbolic calculus
Eigenvalue problem
Similarity transformation

a b s t r a c t

Approaches to approximate diagonalization of variable-coefficient differential operators
using similarity transformations are presented. These diagonalization techniques are
inspired by the interpretation of the Uncertainty Principle by Fefferman, known as the
SAK Principle, that suggests the location of eigenfunctions of self-adjoint differential
operators in phase space. The similarity transformations are constructed using canonical
transformations of symbols and anti-differential operators for making lower-order
corrections. Numerical results indicate that the symbols of transformed operators can be
made to closely resemble those of constant-coefficient operators, and that approximate
eigenfunctions can readily be obtained.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the problem of approximating eigenvalues and eigenfunctions of an mth order differential
operator L(x,D) defined on the space Cn

p [0, 2π ] consisting of functions that are m times continuously differential and
2π-periodic. The operator L(x,D) has the form

L(x,D)u(x) =

m
α=0

aα(x)Dαu, D =
1
i
d
dx
, (1)

with spatially-varying coefficients aα , α = 0, 1, . . . ,m. We will assume that the operator L(x,D) is self-adjoint and positive
definite. In Section 6, we will drop these assumptions, and also discuss problems with more than one spatial dimension.

Our goal is to develop an algorithm for preconditioning a differential operator L(x,D) to obtain a new operator L̃(x,D) =

UL(x,D)U−1 that, in some sense, more closely resembles a constant-coefficient operator. This would facilitate the solution
of PDE involving L(x,D) through spectral methods such as the Fourier method, or Krylov subspace spectral (KSS) methods
[1,2]. To accomplish this task, we will rely on ideas summarized by Fefferman in [3].

The structure of the paper is as follows. Section 2 reviews the Uncertainty Principle and Fefferman’s related SAK principle,
and demonstrates how accurately it applies to constant- and variable-coefficient differential operators on a bounded
domain. Section 3 reviews Egorov’s Theorem tomotivate the construction of similarity transformations of pseudodifferential
operators via analysis of their symbols. Section 4 reviews symbolic calculus and then introduces anti-differential operators,
which will be used to homogenize lower-order coefficients of differential operators. The application of the rules of
symbolic calculus to anti-differential operators will be presented. Section 5 shows how simple canonical transformations
can be used for local homogenization of a symbol in phase space. Section 6 contains the development of unitary
similarity transformations based on anti-differential operators for iterative homogenization of lower-order coefficients of
pseudodifferential operators. While this work is focused on operators in one space dimension, discussion of generalization
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Fig. 1. Symbol of a constant-coefficient operator A(x,D) = −D2
− 1.

to higher space dimensions is included. Section 7 discusses the practical implementation of the transformations presented
in Sections 5 and 6. Section 8 presents numerical results illustrating the effect of these transformations and demonstrating
the accuracy of approximate eigenfunctions that they produce. Concluding remarks are made in Section 9.

2. The uncertainty principle

The uncertainty principle says that a function ψ , mostly concentrated in |x − x0| < δx, cannot also have its Fourier
transform ψ̂ mostly concentrated in |ξ − ξ0| < δξ unless δxδξ ≥ 1. Fefferman describes a sharper form of the uncertainty
principle, called the SAK principle, which we will now describe.

Assume that we are given a self-adjoint differential operator

A(x,D) =


|α|≤m

aα(x)

1
i
∂

∂x

α
, (2)

with symbol

A(x, ξ) =


|α|≤m

aα(x)(ξ)α = e−iξxA(x,D)eiξx. (3)

The SAK principle, which derives its name from the notation used by Fefferman in [3] to denote the set
S(A, K) = {(x, ξ)|A(x, ξ) < K}, (4)

states that the number of eigenvalues of A(x,D) that are less than K is approximately equal to the number of distorted
unit cubes that can be packed disjointly inside the set S(A, K). Since A(x,D) is self-adjoint, the eigenfunctions of A(x,D) are
orthogonal, and therefore the SAK principle suggests that these eigenfunctions are concentrated in disjoint regions of phase
space defined by the sets {S(A, λ)|λ ∈ λ(A)}.

We consider only differential operators defined on the space of 2π-periodic functions. We therefore use a modified
definition of the set S(A, K),

S(A, K) = {(x, ξ)|0 < x < 2π, |A(x, ξ)| < |K |}. (5)
The absolute values are added because symbols of self-adjoint operators are complex when the leading coefficient is not
constant.

In the case of a constant-coefficient operator A(x,D), the sets S(A, K) are rectangles in phase space. This simple geometry
of a constant-coefficient symbol is illustrated in Fig. 1. The eigenfunctions of A(x,D), which are the functions êξ (x) =

exp(iξx), are concentrated in frequency, along the lines ξ = constant. Fig. 2 shows the volumes of the sets S(A, λj) for
selected eigenvalues λj, j = 1, . . . , 32, of A(x,D). The eigenvalues are obtained by computing the eigenvalues of a matrix of
the form

Ah =

m
α=0

AαDαh (6)
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