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The beds of gravel-bed rivers commonly display distinct sorting patterns, which at length scales of ~0.1−1
channel widths appear to form an organization of patches or facies. This paper explores alternatives to tradi-
tional visual facies mapping by investigating methods of patch delineation in which clustering analysis is ap-
plied to a high-resolution grid of spatial grain-size distributions (GSDs) collected during a flume experiment.
Specifically, we examine four clustering techniques: 1) partitional clustering of grain-size distributions with
the k-means algorithm (assigning each GSD to a type of patch based solely on its distribution characteristics),
2) spatially-constrained agglomerative clustering (“growing” patches by merging adjacent GSDs, thus gener-
ating a hierarchical structure of patchiness), 3) spectral clustering using Normalized Cuts (using the spatial
distance between GSDs and the distribution characteristics to generate a matrix describing the similarity be-
tween all GSDs, and using the eigenvalues of this matrix to divide the bed into patches), and 4) fuzzy cluster-
ing with the fuzzy c-means algorithm (assigning each GSD a membership probability to every patch type).
For each clustering method, we calculate metrics describing how well-separated cluster-average GSDs are
and how patches are arranged in space. We use these metrics to compute optimal clustering parameters,
to compare the clustering methods against each other, and to compare clustering results with patches
mapped visually during the flume experiment.
All clustering methods produced better-separated patch GSDs than the visually-delineated patches. Although
they do not produce crisp cluster assignment, fuzzy algorithms provide useful information that can charac-
terize the uncertainty of a location on the bed belonging to any particular type of patch, and they can be
used to characterize zones of transition from one patch to another. The extent to which spatial information
influences clustering leads to a trade-off between the quality of GSD separation between patch types and
the spatial coherence of patches. Methods incorporating spatial information during the clustering process
tended to produce a finite number of types of patches. As methods improve for collecting high-resolution
grain size data, the approaches described here can be scaled up to field studies to better characterize the
grain size heterogeneity of river beds.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The beds of gravel bed rivers frequently display considerable spa-
tial heterogeneity in the grain size and sorting. Variations in the sur-
face composition of river beds occur at all scales, but once they reach
a scale of ~0.1−1 channel widths, they are referred to as textural pat-
ches or facies (e.g., Bluck, 1971; Bridge and Jarvis, 1976; Forbes, 1983;
Dietrich and Smith, 1984; Kinerson, 1990; Wolcott and Church, 1991;
Lisle and Madej, 1992; Paola and Seal, 1995; Sambrook Smith and
Ferguson, 1995; Crowder and Diplas, 1997; Buffington and
Montgomery, 1999; Dietrich et al., 2005; Yarnell et al., 2006; Nelson

et al., 2009, 2010). Sorted areas of river beds that are temporally
and spatially stable (“forced” patches (Nelson et al., 2010)) remain
spatially persistent through time, despite passing considerable sedi-
ment load (see discussion in Dietrich et al., 2005). These patches
emerge as a consequence of the complex interaction between bed to-
pography, the flow field, and the local sediment transport field,
wherein topographically-forced local divergences in boundary shear
stress are compensated by local divergences in bedload transport
(Dietrich and Smith, 1984; Dietrich, 1987), which under low excess
stress conditions, commonly encountered in gravel bed rivers, are
achieved through selective transport and local adjustment of bed-
surface grain size (Clayton and Pitlick, 2007, 2008; Nelson et al.,
2010).

Bed-surface patches at this scale affect physical and biological pro-
cesses through the influence on local near-bed flow fields and rates of
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sediment transport. A characteristic local grain size (e.g., the D84, the
grain size for which 84% of the sediment is finer) is often used to pa-
rameterize local roughness in hydrodynamic calculations for flow and
boundary shear stress (e.g. Leopold and Wolman, 1957; Dietrich and
Whiting, 1989;Wilcock, 1996). This hydrodynamic feedback between
grain size and boundary shear stress has been shown to affect particle
mobility (e.g., Venditti et al., 2010) and the formation of bedload
sheets (Seminara et al., 1996). Current mixed-grain-size bedload
transport algorithms (Parker, 1990; Wilcock and Crowe, 2003) re-
quire a bed-surface grain-size distribution for input, in part because
they employ empirical “hiding functions” to determine the critical
stress for mobility for each grain size as a function of the local bed-
surface grain-size distribution. Bed-surface patchiness has been in-
voked as a potential cause of downstream fining (Paola and Seal,
1995) and as an important source of error in one-dimensional calcu-
lations of bedload transport (Ferguson, 2003). Numerical simulations
of channel morphodynamics with mixed-grain-size sediment trans-
port have shown that bed-surface patches interact with the evolving
bed and, through the effect on the flow field, can profoundly influence
channel evolution and steady state bed morphology (Nelson, 2010;
Nelson et al., 2011). Patchiness also has biological implications, be-
cause many aquatic organisms prefer microhabitats (Cummins and
Lauff, 1969; Rabeni and Minshall, 1977; Reice, 1980) or spawning
grounds (Kondolf and Wolman, 1993; Overstreet et al., 2010; Riebe
et al., 2010) consisting of particular grain sizes, and field studies
have demonstrated connections between morphological units and
spawning activity (e.g., Moir and Pasternack, 2008; Senter and
Pasternack, 2011).

Although the grain-size distribution of the surface of a stream bed
varies continuously through geographic space, it can be advantageous
to classify locally-similar regions of the bed into patches of grain size.
For example, the accuracy of flow models or calculations of mixed-
grain-size sediment transport (Parker, 1990; Wilcock and Crowe,
2003) where bed-surface heterogeneity has been discretized into
representative types of patches should exceed that of calculations
that assume a width-averaged or reach-averaged bed-surface grain-
size distribution (e.g., Ferguson, 2003; Nelson et al., 2009), but the
patch-based calculations will be simpler to implement than calcula-
tions requiring continuously-varying, spatially-distributed informa-
tion of grain sizes. Additionally, patch-based representations of
heterogeneity are frequently used in landscape and fluvial ecology
(e.g., Cooper et al., 1997; Gustafson, 1998; Wu et al., 2000; Turner
et al., 2001; Ahlqvist and Shortridge, 2010), and representation of
bed-surface heterogeneity as categorical patch data may allow geo-
morphic characteristics to be more readily incorporated into existing
frameworks of ecological or landscape heterogeneity. For instance,
Yarnell et al. (2006) used FRAGSTATS (McGarigal et al., 2002), soft-
ware popularly used to compute indices and metrics used in land-
scape ecology, to measure the Shannon's Diversity Index (SHDI) for
grain size patch maps of river channels and flumes (e.g., Kinerson,
1990; Lisle et al., 1993) and compared the SHDI with relative sedi-
ment supply q* (Dietrich et al., 1989) to show that increased sediment
supply tends to increase habitat heterogeneity.

Although numerous studies document bed patches or facies (e.g.,
Nelson et al., 2009, and references therein), the techniques used to
delineate the boundaries of patches tend to be visual, semi-
quantitative, and site-specific (e.g., Kinerson, 1990; Lisle and Madej,
1992), which can pose potential problems of repeatability, transfer-
ability, and precision (e.g., Poole et al., 1997). To make maps of pat-
ches more objective and reliable, techniques have been proposed to
combine visual identification of facies and quantitative measurement
of grain sizes (Kondolf and Li, 1992; Buffington and Montgomery,
1999). A possibly better approach for classification and delineation
of patches would be the development of algorithms that sweep over
high-resolution grain-size data and automatically delineate bound-
aries of patches based on some classification or clustering criteria.

Whereas some efforts have been made to apply moving-window
techniques to grid-based sediment samples (Crowder and Diplas,
1997), traditionally such purely data-driven approaches to the delin-
eation of patches have not been feasible because of the extreme effort
required to obtain grain-size data at sufficient resolution.

Recently, however, significant progress has been made in develop-
ing methods to measure bed-surface grain size and roughness charac-
teristics from photographs and remotely sensed data. Photographic
methods that use statistics such as semivariograms of image texture
(Verdú et al., 2005) or the autocorrelation (Rubin, 2004; Barnard et
al., 2007; Warrick et al., 2009), fractal dimension (Buscombe and
Masselink, 2009), or spectral decomposition (Buscombe et al., 2010)
of image intensity to estimate grain sizes have been applied to close-
up photos of sediment (Barnard et al., 2007) or to images captured
from aerial platforms (Carbonneau et al., 2004, 2005); other image pro-
cessing methods seek to outline and measure individual grains in an
image (Butler et al., 2001; Sime and Ferguson, 2003; Graham et al.,
2005a, 2005b, 2010). Similar methods have been developed to extract
grain sizes (McEwan et al., 2000) and roughness properties (Katul et
al., 2002; Aberle and Nikora, 2006; Heritage and Milan, 2009; Aberle
et al., 2010) from high-resolution digital elevation models.

Whatever the technique used, the ultimate output of a procedure
of this kind will be a dataset of grain sizes of high spatial resolution, in
the form of either a field of point measurements of grain sizes or an
array of grain-size distributions. For the purposes of this study, we
now ask: how can we draw boundaries on this field of grain sizes to
delineate a meaningful set of patches?

Here, we explore how clusteringmethods, when applied to a high-
resolution spatial grid of grain-size distributions, can be used to auto-
matically delineate bed-surface patches. Clustering is of great interest
to computer scientists and statisticians concerned with pattern rec-
ognition, data mining, image segmentation, and machine learning
(among other areas). In a general sense, clustering is the unsupervised
classification of patterns (observations, data items, or feature vectors)
into groups (clusters) (Jain et al., 1999). Jain (2009) provides the fol-
lowing operational definition of clustering: “Given a representation of
n objects, find K groups based on a measure of similarity such that
the similarities between objects in the same group are high while
the similarities between objects in different groups are low.” This is
precisely the objective of river bed-surface patch delineation: a facies
map of a river bed should divide the bed into patches such that the
sediment comprising an individual patch is as homogeneous as possi-
ble whereas the grain-size distributions of adjacent patches are as
different as possible.

In our analysis, we seek answers to the following questions:
(1) Are patches produced from data-driven, unsupervised clustering
methods better defined than those produced from visual mapping?
(2) Is a trade-off between grain size separation and spatial coherency
of patches reflected in the degree to which clustering methods incor-
porate spatial information? And (3) how certain can we be that a
particular bed location belongs to just one patch? We use partitional,
hierarchical, spectral, and fuzzy clustering methods to generate maps
of patches from a grain size dataset collected during a flume experi-
ment in which channel topography and sorting patterns on the bed
surface were extensively documented. From the resulting patch
maps, we calculate metrics that describe the spatial arrangement of
patches and the similarities and differences between the grain-size
distributions of different types of patches. Our results suggest that
when thesemetrics are used to guide the choice of appropriate param-
eters, clustering methods generate better separation of grain-size dis-
tributions between patches than visual mapping. They also show that
the inclusion of spatial constraints in the clustering process results in
delineation of a finite number of types of patches whose characteristic
grain-size distributions are less well-separated, but whose spatial
arrangement is more coherent, than patches produced by methods
that neglect spatial location.
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