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Parameters correlated to surface roughness are quite commonly used to describe landslide activity in quantita-
tive geomorphology. Previous studies proved that topographic roughness is closely related to both landslideme-
chanics and features. A number of different techniques have emerged over the years to describe quantitatively
the great variety of landforms and processes that affect unstable slopes. In this work we perform a comparative
analysis of several methods used in literature to compute surface roughness (root mean square applied to eleva-
tion and slope grids, eigenvalue ratios, semivariance, discrete Fourier transform, continuous wavelet transform
and wavelet lifting scheme) in order to evaluate quantitatively which algorithms are best suited to discriminate
active landslides and to predict them for automated mapping purposes. A first test was carried out on artificial
surfaces simulating different roughness patterns encountered in nature, so to highlight advantages and limits
in controlled conditions. Then, the algorithms were applied to LiDAR datasets of two earth flow case studies in
the Northern Apennines, Italy.
Results obtained by using “effect-size” statistical test to objectively quantify the capability of the different algo-
rithms of discriminating active landslide slopes from other slope types showed that most algorithms perform
reasonablywell and that simple techniques (RMS-based andwavelet lifting scheme) achieve equal or sometimes
even better results thatmore complex ones. Results from the use of roughness indexes for the prediction of land-
slide slopes in automated mapping showed that non-forested active slopes could be predicted bymost methods
with an accuracy greater than 85% and that most methods had a 15% drop in prediction accuracy in forested
active slopes. Results also proved that increasing the size of the moving window has minor beneficial effects in
predictive capability, suggesting that small size of pixels and moving windows should be used to retain a full
resolution of surface conditions in slopes.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In quantitative geomorphological analysis, the classification of terrain
types requires the use of statistical parameters to define the topographic
signature of specific processes and landforms (Pike, 1988; Bishop and
Shroder, 2004; Hengel and Reuter, 2009). However, since landforms
vary in size and shape according to a variety of factors (e.g. the causal
geomorphic process, climate, lithology, vegetation, and tectonic activi-
ty) many different statistical parameters have been proposed in litera-
ture to provide a quantitative description of topography (Bishop et al.,
1998; Wallace et al., 2004; Miska and Hjort, 2005). In the specific case
of landslides, some recent studies have shown that surface roughness
can be successfully used to delineate landslide features, to analyze
past landslide activity or to create maps of active landslides (McKean

and Roering, 2004; Van Den Eeckhaut et al., 2005; Booth et al., 2009).
The growing availability of high-resolution LiDAR (Light Detection
And Ranging) topographic data and the increase of computational ca-
pacity, provide new opportunities for the statistical analysis of terrain
roughness. Such analysis could contribute to the development of rou-
tines for semi-automatic mapping of landslides from large regional
datasets and for the objective evaluation of their degree of activity.

A number of methods have been proposed to quantify topographic
roughness. Themost commonly usedmethods are based on the statistical
dispersion of heights, slopes and normal vectors to slopes (Shepard et al.,
2001; Guth, 2003; Grohmann, 2004) or on the ratio between the surface
area of an object and its planar area (Hobson, 1972; Troiani andDella Seta,
2011). Alternatively,more advanced spectral techniques can also be used.
Booth et al. (2009) suggest that landslides features can be recognized
using automated, frequency-domain-based procedures. However, they
admit that such a classificationmust be backed-up by classic photo inter-
pretation and field analysis. Fractal dimension is also used as ameasure of
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surface complexity (Mandelbrot, 1983; Tate, 1998; Wilson et al., 2007).
Other studies suggest the use of semivariograms (Glenn et al., 2006;
Trevisani et al., 2009) or second-generation wavelets (Hani et al., 2011).

Such a variety of methods indicate that it is difficult to characterize
topographic roughness by one specific algorithm. The question is
whether some methods are better-suited than others in terms of dis-
criminatory capability and in terms of their usage for automated map-
ping of topographic features such as landslides. To our knowledge, a
quantitative comparative analysis including all major methods for
roughness analysis has never been done.

The objective of this paper is therefore to compare the performance
of several roughness computation algorithms in discriminating active
landslides and in producing accurate automatedmaps of landslide activ-
ity. For this purpose, themethods are tested on sample synthetic surfaces
as well as on two LiDAR datasets acquired for two study areas located in
the Northern Apennines (Italy). To measure the ability of the algorithms
to discriminate between unstable and stable slopes, a simple and effi-
cient technique based on effect-size statistics (Cohen, 1988) is adopted
(Section 4.1). Moreover, we propose a method for the automated map-
ping of active landslides based on surface roughness computation
(Section 4.2). To evaluate the accuracy of predictive maps obtained
with different algorithms, predicted landslides are compared to the ob-
served landslides by using the ROC curve (Green and Swets, 1966).

2. Background on roughness computation

A number of different algorithms have been proposed in the litera-
ture to quantify surface roughness. Most of these methods, however,
have not been developed to describe topographic roughness and show
some deficiencies when applied to this purpose. According to Hani et
al. (2011), an ideal algorithm suitable for a distributed analysis of sur-
face morphology should:

i) provide a local, pixel-level measure of the surface, not a global
measure of the whole DEM;

ii) be simple enough so to run on large datasets with a reasonable
computational time and memory usage;

iii) return indexes that are representative of an intrinsic property
of the surface, invariant with respect rotation or translation;

iv) take into account the scale dependency characteristics of natu-
ral surfaces; and

v) have an intuitive or physical meaning.

Existing methods fall short to meet all these requirements which
may explain why many different algorithms were developed. Basically
all algorithms can be implemented for analyzing a DEM on a pixel
basis by using a moving window (or kernel) roving over the dataset.
Moving window techniques work like spatial filters which replace the
central value in the window with some function of neighboring pixel
values, including that central value. One known limit of moving win-
dow methods is that they cannot provide values at the boundaries of
the analyzed raster dataset.

The key characteristics of methods considered in this work are sum-
marized in Table 1. Their applicability to complex topographic surfaces
was tested on synthetic surfaces (Fig. 1a) representing different combina-
tions of smooth background, random noise and deterministic sine waves.
Such components are representative of natural topographic surfaces,
which can be described as a complex mix of self-affine Brownian noise
and pseudo-deterministic landforms with dominant spatial harmonics
(Shepard et al., 1995; Malamud and Turcotte, 1999; Booth et al., 2009).

RMS-based algorithms are probably the most commonly adopted
methods for roughness computation. These methods are simple to
implement and can describe random, deterministic and composite
surface roughness (Fig. 1b, c). Data detrending is required in order to
remove the general sloping trend and it is usually carried out by
subtracting the elevation of a best fit plane to the elevation of pixels in
the computation window. RMS methods are quite sensitive to outliers,

which are common in high-resolution DEMs in areas characterized by
the presence of fractures, trenches and isolated rock blocks. Tomitigate
this problemKreslavsky andHead (1999) introduced the absolute slope
(AS) index.

The standard deviation of slope (SDS; Frankel and Dolan, 2007) is
a slope-based roughness index which uses the cell slope m instead of
the cell elevation z (see Table 1). Data detrending is not required in
this method, as the general trend of the surface is removed by com-
puting the difference between the mean slope in the moving window
and the slope of individual pixels inside it.

The same applies to the direction cosine eigenvalue ratios (DCE;
McKean and Roering, 2004), which measures the variability in slope
and aspect using the normalized eigenvalues (S1, S2) of the slope ori-
entation matrix (Davis, 1986). Theoretically, this method is unable to
describe random roughness because the two eigenvalues become
equal (S1≈S2) and the roughness index tends to infinite. In the case
of topography, however, random roughness is always superimposed
to a deterministic sloping (or horizontal) surface. Slope vectors are

Table 1
Surface roughness algorithms.N=width of the moving windows (number of cells); zi=cell
elevation; z=mean elevation within the moving window; zc=elevation of the central cell;
zb=elevation of the cells along the border; Δxb=distance from the central cell to a border
cell; ΔX=d(N−1)/2, where d is the cell size; mi=slope of the i-th cell; m�=mean slope
within the moving window; S1, S2=normalized eigenvalues of the 3×3 orientation matrix
(given by the sums of cross products of direction cosines); xi, yi=spatial coordinates of the
i-th cell; h=lag distance; K=number of iterations (k) of the wavelet lifting scheme;
A(k)=cumulative difference in elevation within the moving window between iteration k
and iteration k−1; f1, f2=characteristic frequency range (see text);VDFT=two-dimensional
discrete Fourier transform periodogram;VCWT=two-dimensional continuouswavelet trans-
form periodogram. The field “Detrending” indicates the need of data detrending.

Method/
parameter

Algorithm Detrending Reference

RMS height RMSH ¼ 1
N2−1

XN2

i¼1

zi−zð Þ2
" #1=2

Yes Shepard et al.
(2001)

RMS
deviation

RMSD ¼ 1
4 N−1ð Þ

X4 N−1ð Þ

b¼1

zc−zbð Þ2
" #1=2

Yes Shepard et al.
(2001)

RMS slope RMSS ¼ 1
4 N−1ð Þ

X4 N−1ð Þ

b¼1

zc−zb
Δxb

� �2
" #1=2

Yes Shepard et al.
(2001)

Absolute slope AS ¼ 1
4 N−1ð Þ

X4 N−1ð Þ

b¼1

zc−zbj j
ΔX

" #
Yes Kreslavsky and

Head (1999)

Standard
deviation of
slope

SDS ¼ 1
N2

XN2

i¼1

mi−mð Þ2
" #0:5

No Frankel and
Dolan (2007)

Direction
cosine
eigenvalue

DCE ¼ ln S1=S2ð Þ½ �−1 No McKean and
Roering
(2004)

2D semivar. γ ¼ 1
2n

Xn
i¼1

z xi; yið Þ−z xiþh; yiþh

� �� �2
Yes Glenn et al.

(2006)

Wavelet lifting
scheme WLS ¼

XK
k−1

A kð Þ
N2

Yes Hani et al.
(2011)

Discrete
Fourier
transform

DFT ¼
Xf2
f−f1

VDFT fð Þ
Yes Booth et al.

(2009)

Continuous
wavelet
transform

CWT ¼
Xf2
f−f1

VCWT fð Þ
No Booth et al.

(2009)
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