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a b s t r a c t

We consider an ecological model for biodegradation of toxic substances in aquatic and
atmospheric biotic systems. The model, which is described by a nonlinear system of four
ordinary differential equations, is known to be experimentally validated. We compute the
equilibrium points of the model and study their asymptotic stability. Basic properties of
the solutions like uniform boundedness and uniform persistence are established. Global
asymptotic results are also developed. Numerical simulation results are presented to
demonstrate the theoretical studies.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Theprocesses in continuous bioreactors are usually describedby systemsof nonlinear ordinary differential equations. The
nonlinearity is determined by the microbial growth with specific growth rates usually described by a Monod-type kinetics.
The processes are more complicated when possible inhibition due to higher substrate concentrations occurs [1,2].

In this paper, we consider a continuous flowbioreactormodel describing 1, 2-dichloroethane biodegradation byKlebsiella
oxytoca va 8391 immobilized on granulated activated carbon [3]. The model differs from known and well studied bioreactor
models (cf. e.g. [4,1,5,2] and the references therein), because the process is additionally complicated by introducing a second
phase, where immobilized microbial cells are present. These cells, attached to carrier particles can grow and detach from
the solid surface to leak into the bulk liquid. After detachment, they can live and grow in the liquid phase, thus contributing
to the overall process of substrate biotransformation, as biodegradation or product formation. The balance between the
rates of these processes of microbial growth, the cell detachment and the inhibition due to high substrate concentration is
quite delicate and it may cause instability in the overall continuous process. The loss of stability leads to slow down with
insufficient substrate conversion and wash-out the cells from the reactor. The other extremity is the insufficient feed at low
dilution rates and cell starvation.

The model considered here is developed and validated in [3] by authors’ own experiments. The aim of this work is
to present rigorous mathematical stability analysis of the model in accordance with the experimental data. The paper is
organized as follows. Section 2 introduces the continuous flow bioreactor model. In Section 3, we compute the equilibrium
points of the model. The local asymptotic stability of the equilibrium points is studied in Section 4. Basic properties of the
solutions like uniform boundedness and persistence, global stability of the so called washout steady state as well as of
the practically important internal equilibrium point are established in Section 5. Section 6 presents simulation results as
illustration of the theoretical studies.
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Table 1
Definition of the model variables and parameters.

Parameter definitions Values

x1 Concentration of free cells (kg m−3) –
xim Concentration immobilized cells (kg m−3) –
s Substrate (DCA) concentration (kg m−3) –
p Product (chloride) concentration (kg m−3) –
D Dilution rate (h−1) 5.9
kim Cell leakage factor (m h−1) 0.01
sin Inlet substrate concentration s2 (mmol/l) 0.05
k Parameter in the Langmuir isotherm 0.612
ks Saturation constant (kg m−3) 0.26
ki Substrate inhibition constant (kg m−3) 0.984
kLa Volumetric mass transfer coefficient for DCA for adsorption (h−1) 0.51
m1 Maximum specific growth rate for free cells (h−1) 0.972
m2 Surface concentration limit of DCA in the Langmuir isotherm (g kg−1) 0.63
mim Maximum specific growth rate for immobilized cells (h−1) 0.18
β1 Biodegradation rate constant due to free cells (h−1) 0.001
βim Biodegradation rate constant due to immobilized cells (h−1) 0.0015
γ Yield coefficient for free biomass production ((kg of cells)/(kg of substrate)) 77.6

2. Model description

The continuous flow bioreactor model describing 1, 2-dichloroethane (DCA) biodegradation by Klebsiella oxytoca va 8391
immobilized on granulated activated carbon is presented by the following equations [3]

ẋ1 = (µ1(s)− D)x1 + kimxim
ẋim = (µim(s)− kim) xim

ṡ = −
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where the dot over the phase variables x1, xim, s, p means d
dt and

µ1(s) =
m1s

ks + s + s2/ki
is the specific growth rate function for free cells,

µim(s) =
mims

ks + s + s2/ki
is the specific growth rate function for immobilized cells,

µ2(s) =
m2s
k + s

models the DCA adsorption capacity.

The definition of the phase variables x1, xim, s and p as well as of the model parameters is given in Table 1. The last
column of the table contains experimentally validated numerical values for the coefficients, taken from [3]; we shall use
them mainly in the computer simulations. Most of the investigations here are carried out symbolically, without concrete
parameter values.

The growth rate functions µ1(s) and µim(s) achieve their maximum at the point sm =
√
kski. The function µ2(s) is

bounded and µ2(s) < m2 is valid for all s ≥ 0.
In accordance with the numerical coefficient values in Table 1, we assume that the following inequalities hold true

kLa < 1, m2 < 1, mim < m1. (2)
The last inequality in (2) implies that µim(s) < µ1(s) for all s > 0.

3. Equilibrium points of the model

The equilibrium points of (1) are solutions of the form (x1, xim, s, p) of the nonlinear system
(µ1(s)− D)x1 + kimxim = 0 (3)
(µim(s)− kim) xim = 0 (4)
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