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a b s t r a c t

A class of simplified background neural networks model with a large number of neurons
is proposed. Continuous attractors of the simplified model are studied in this paper. It
contains: (1) When the background inputs are set to zero and the excitatory connections
are in Gaussian shape, continuous attractors of the new network are obtained under some
condition. (2) When the background inputs are nonzero and the excitatory connections
are still in Gaussian shape, continuous attractors are achieved under some appropriately
selected condition. (3) Discussions and examples are used to illustrate the theories
developed.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is known that the background input plays very important roles in practical applications. For example, a gun shot may
trigger a suddenmotor response in the games. The same gun shot, however,may be unimportant if it sounds inside a theater.
Another example is that the color of a visual stimulus may instruct the subject to perform different motor actions. A class of
background neural networks model is proposed by Salinas [1] to analyze how the background controls the stability of the
state in which all neurons fire at the same time. It shows that the background input has strong impact on neural activity
(see [2–11]) that acts as a switch (see [12–15]) and allows the network to be turned on or off. Interestingly, the neural
network in [1] can exactly exhibit continuous attractors when the excitatory connection weights are in Gaussian shape and
some parameters are appropriately tuned.

In recent years, continuous attractors of neural networks have been studied extensively. They are important dynamical
properties in neurobiological models studies. There is good evidence for continuous stimuli, such as orientation, moving
direction, and the spatial location of objects could be encoded as continuous attractors [16–21]. For example, the memory
of eye position is stored in an approximate line attractor space when some parameters are appropriately selected in [19].
When the instantiations of an object lie on a continuous pattern manifold, Seung [20] proposed that the object may be
represented by a continuous attractor. That is to say, continuous attractors canmodel the manifold fromwhich the patterns
are drawn. Tang et al. [22] investigated the continuous attractors as limit cycle. However, activities of the above-mentioned
models are characterized by line attractors or bump attractors and it is difficult for those to generate unimodal profiles of
activity [3,5]. Recently, a class of recurrent neural networks can realize unimodal profiles of activity with some precisely
tuned parameters in [17]. However, the authors did not take external inputs into consideration in [17] and did not analyze
how the inputs affect continuous attractors.

Due to the complex network state equation in [1], it is hard to analyze some of its important properties such as
continuous attractors that many brain theories have implicated in learning and memory. So far, there have been only a
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few simulations and exhaustive theoretical analysis for continuous attractors of the original background neural network
model. Especially,when the background input is nonzero, the complexity of the analysis of continuous attractors in [1] grows
rapidly as the division operation in the model. Therefore, these restrictions of the background neural network will limit its
applications.

Inspired by Oja’s idea [23], in this paper, a class of simplified background neural networks model with a large number
of neurons is proposed through the use of Taylor’s theorem. The division operation in the original network is replaced by
the multiplication operation in the new one. The simplified network not only can produce unimodal activity but also switch
between two different states under certain conditions. Compared with the model reported in [17], it can be seen that our
model considers the input which can cause continuous attractors upward and wider. Thus, the proposed model can be seen
as a promising alternative of the original one. In this paper, we mainly focus on the analysis for continuous attractors of
the new model in two cases, i.e., the background inputs are set to zero and nonzero constants. Conditions for stability of
equilibrium points of the model are obtained. Under the conditions, continuous attractors are achieved. Interestingly, we
find that when the input is higher the network can produce persistent activity which can be switched on or off by the
background input. Therefore, the input plays an important role such as a gating or context signal.

This paper is organized as follows. In Section 2, a class of simplified background neural networks model is proposed. In
Section 3, continuous attractors of the newmodel are obtained under some conditions. In Section 4, further discussions are
carried out. The simulation results are given in Section 5. Finally, conclusions are drawn in Section 6.

2. Preliminaries

In [1], Salinas proposed a class of background neural networks with a relatively large number of neurons as follows:
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where ρ ≥ 0 is the density of neurons. x(a) denotes the firing rate of the neuron a, where a and b act as the neuron’s indices
or labels, respectively. h̃(a) denotes the background input. w̃(a, b) corresponds to excitatory connection of two neurons a
and b. υ ≥ 0 is the inhibitory connection. τ > 0 is a time constant, s > 0 is a saturation constant.

Inspired by Oja’s idea [23], a class of simplified background neural networks can be described by the following equation:
(see Appendix for details)
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for t ≥ 0, where c =
υ
s is a positive constant. w(a, b) =

w̃(a,b)
√
s , h(a) =

h̃(a)
√
s . For simplicity, the time constant τ is ignored.

The difference between the original background neural network model and the simplified one is that the division
operation in the original model is replaced by the multiplication operation in the new one.

3. Continuous attractors

In this section, we will study continuous attractors of the network (2). Two stability conditions for (2) will be derived in
two cases. i.e., all the inputs h(a) = 0 and h(a) ≠ 0. In both cases, the simplified network can exhibit continuous attractors
if the synaptic connections are in Gaussian shape and other parameters are appropriately tuned.

3.1. Case 1: h(a) = 0

In this case, when all the background inputs are set to zero, we can rewrite (2) as
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for t ≥ 0. Suppose xmax(t) is a solution of (3).
It is easy to verify that zero is a stable equilibrium point of the following equation
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for t ≥ 0. Next, the stability of nonzero equilibrium points of (4) will be discussed.
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