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ARTICLE INTFO ABSTRACT

Article history: Background and objective: The discrimination of Alzheimer’s disease (AD) and its prodromal
Received 13 April 2015 stage known as mild cognitive impairment (MCI) from normal control (NC) is important
Received in revised form 1 July 2015 for patients’ timely treatment. The simultaneous use of multi-modality data has been
Accepted 3 August 2015 demonstrated to be helpful for more accurate identification. The current study focused on

extending a multi-modality algorithm and evaluating the method by identifying AD/MCI.

Keywords: Methods: In this study, sparse representation-based classification (SRC), a well-developed
Alzheimer’s disease (AD) method in pattern recognition and machine learning, was extended to a multi-modality
Mild cognitive impairment (MCI) classification framework named as weighted multi-modality SRC (wmSRC). Data including
Multi-modality three modalities of volumetric magnetic resonance imaging (MRI), fluorodeoxyglucose (FDG)
Neuroimaging data positron emission tomography (PET) and florbetapir PET from the Alzheimer’s disease Neu-
Sparse representation-based roimaging Initiative database were adopted for AD/MCI classification (113 AD patients, 110
classification (SRC) MCI patients and 117 NC subjects).

Results: Adopting wmSRC, the classification accuracy achieved 94.8% for AD vs. NC, 74.5%
for MCI vs. NG, and 77.8% for progressive MCI vs. stable MCI, superior to or comparable with
the results of some other state-of-the-art models in recent multi-modality researches.
Conclusions: The wmSRC method is a promising tool for classification with multi-modality
data. It could be effective for identifying diseases from NC with neuroimaging data, which
could be helpful for the timely diagnosis and treatment of diseases.

© 2015 Elsevier Ireland Ltd. All rights reserved.

has attracted much attention in recent decades. Biomarkers

1. Introduction based on various neuroimaging modalities such as volumet-
ric magnetic resonance imaging (MRI) and positron emission
Alzheimer'’s disease (AD) is the most common form of demen- tomography (PET) measuring either metabolic or pathological
tia [1]. The identification of AD and its prodromal stage named  pyrden with different radioactive tracers have been consid-
as mild cognitive impairment (MCI) from normal control (NC)  ered to discriminate AD or MCI with promising results [2-4].
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MRI, which measures the structure of the cerebrum, has
turned out to be an efficient tool for detecting the structural
changes caused by AD or MCI. For example, the brain atro-
phy of spatial patterns or the atrophy of brain regions such
as hippocampal and parahippocampal have been character-
ized as efficient biomarkers for the prediction of conversion
from MCI to the subsequent AD [5-7]. Furthermore, fluo-
rodeoxyglucose PET (FDG-PET), a technique for measuring
glucose metabolism, is also a sensitive biomarker for the
detection of AD or MCI. Plenty of FDG-PET studies have iden-
tified distinct abnormalities patterns of brain metabolic in
individuals that diagnosed with AD or MCI, such as the reduc-
tion of glucose metabolism in parietal, frontal and posterior
cingulate cortices [6,8-10]. Most recently, the Pittsburgh com-
pound B, florbetapir or flutematmol PET, a means to measure
the accumulation of amyloid in the brain non-invasively, has
been introduced and demonstrated to be promising for dif-
ferentiating AD or MCI from NC, such as the higher uptake
of florbetapir in the anterior and posterior cingulate cortex,
frontal medial cortex for AD or MCI patients [11,12].

Each neuroimaging modality could offer valuable informa-
tion for AD or MCI, and studies reported that biomarkers from
different modalities could offer complementary information
for different aspects of a given disease process [4,12-15]. Com-
bining these potentially complementary pieces of information
from various modalities have been suggested to produce
more powerful classifiers [4,16-18]. As a matter of fact, sev-
eral groups have reported that exploiting the combination of
multi-modality data to identify AD or MCI outperforms that
based on each single-modality data alone [2,19,20]. Though all
these multi-modality explorations reported positive results,
the performances of different algorithms (for multi-modality
data integration) can vary, and should be interesting to
compare.

Indeed, there have been numerous reports on various ways
of combining multi-modality data for efficient classification.
For example, a weighted multiple kernel learning (MKL) model
has been widely applied to combine different modalities for
AD or MCI classification [2,19,21]; a linear weighted random
forest (RF) model can also efficiently discriminate AD or MCI
from NC by combining different modalities [4]. Those stud-
ies demonstrate that the weighted combination approach is a
simple-while-effective way for multi-modality analysis. Fur-
thermore, methods that include joint feature selection for
classification, such as the joint regression and classification
(JRC) algorithm that was recently proposed by Zhu et al. [22,23]
have been indicated to be effective in AD/MCI diagnosis with
directly concatenating features from multi-modalities.

Sparse representation-based classification (SRC), a rela-
tive recently introduced method in pattern recognition and
machine learning, has been put forward by Wright et al. and
has been indicated to be an efficient tool in face recognition
[24,25]. SRC assumes that, if there are sufficient training sam-
ples from each class, then each test sample can be expressed
as a sparse linear combination of the training samples, and
its class label can be assigned with minimum representation
residual. Recently, Liu et al. [26] introduced SRC into neu-
roimaging communities and demonstrated its feasibility and
effectiveness for discriminating AD or MCI from NC with MRI
data. However, the use of SRC for multi-modality data and its

performance for the classification of AD or MCI from NC have
not been concerned a lot.

In this paper, data from three modalities i.e. MRI, FDG-PET
and florbetapir PET were combined, and a weighted multi-
modality SRC (wmSRC) method was extended and carried
out to examine its robustness and the classification accu-
racy for AD/MCI. Our experimental results indicated that the
wmSRC method could achieve better or comparable clas-
sification performance for both AD and MCI classification,
compared with some other state-of-the-art multi-modality
classification algorithms.

2. Material and methods
2.1. Theory

The sparse representation-based classification (SRC) is first
presented in this section; then the extended multi-modality
framework based on SRC, named as weighted multi-modality
SRC (wmSRC) is described to combine multi-modality data for
classification.

2.1.1. Sparse representation-based classification (SRC)
SRCis put forward by Wright et al. [24], its classification model
can be simply described as follows:

SRC uses sparse coding to denote a test sample by a
linear combination of some atoms from a given dictionary,
where the dictionary atoms are actually the training samples.
Suppose D-dimensional N training samples from K classes
A=[A1, ..., A;..., Ag]enP*N where D is the number of
features, N=Ny+...+Nj+...+Ng, and A| = [all,...,a},“.a}\,l] €
RP*NI consists of Nj training samples from the I-th class, then
for a test sample y € %P, the sparse coding can be written as:

X = arg min [|x|l{, subjecttoHAx — y”2 <e, (1)

where |.||; represents the standard L1 norm, |.||l, represents
the standard Euclidean norm, ¢>0 is error tolerance, x =
[x1,...%,...,%x¢] € %Y is the sparse coefficient, where x; con-
sists of N; representation coefficients that corresponding to
the I-th class.

After the sparse coding, the reconstruction residual from
the I-th class can be denoted as

o) =[x -yl 1=1...K @)

Finally, the class label of the test sample y can be assigned
as the class with the minimum reconstruction residuals:

label(y) = arg minyr;(y) (3)

The convex problems in Eq. (1) can be efficiently solved by
plenty of tools, for example, the L1-magic software package
[27], the GPSR package [28] and the L1-homotopy package [29].
Here in this study, the GPSR package was adopted to solve the
optimization problem.
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