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a b s t r a c t

Among the most popular methods for the solution of the Initial Value Problem are the
Runge–Kutta pairs of orders 5 and 4. These methods can be derived solving a system
of nonlinear equations for its coefficients. To achieve this, we usually admit various
simplifying assumptions. The most common of them are the so-called row simplifying
assumptions. Here we neglect them and present an algorithm for the construction of
Runge–Kutta pairs of orders 5 and 4 based only in the first column simplifying assumption.
The result is a pair that outperforms other known pairs in the bibliography when tested to
the standard set of problems of DETEST. A cost free fourth order formula is also derived for
handling dense output.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the numerical solution of the non-stiff initial value problem,

y′
= f (x, y), y(x0) = y0 ∈ Rm, x ∈ [x0, xf ] (1)

where the function f : R×Rm
→ Rm is assumed to be as smooth as necessary. Traditionally, explicit embeddedRunge–Kutta

methods produce an approximation to the solution of (1) only at the end of each step.
The general s-stage embedded Runge–Kutta pair of orders p(p − 1), for the approximate solution of the problem (1) can

be defined by the following Butcher scheme [1,2]
c A

b
b̂

where A ∈ Rs×s, is strictly lower triangular, bT , b̂T , c ∈ Rs with
c = A · e, e = [1, 1, . . . , 1]T ∈ Rs.

The vectors b̂, b define the coefficients of the (p − 1)-th and p-th order approximations respectively.
Starting with a given value y(x0) = y0, this method produces approximations at the mesh points x0 < x1 < x2 < · · · <

xf . Throughout this paper, we assume that local extrapolation is applied, hence the integration is advanced using the p-th
order approximation. To estimate the error, two approximations are evaluated at each step xn to xn+1 = xn + hn. These are:

ŷn+1 = yn + hn

s−
j=1

b̂jfj and yn+1 = yn + hn

s−
j=1

bjfj,
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where

fi = f


xn + cihn, yn + hn

i−1−
j=1

aijfj


, i = 1, 2, . . . , s.

The local error estimate En = ‖yn − ŷn‖ of the (p − 1)-th order Runge–Kutta pair is used for the automatic selection of
the step size. Given a Tolerance TOL > En, the algorithm

hn+1 = 0.9 · hn ·


TOL
En

 1
p

furnishes the next step length. In case TOL < En then we reject the current step and try again with the left side of the above
formula being hn.

In case that cs = 1, as,j = bj for j = 1, 2, . . . , s − 1 and bs = 0 ≠ b̂s then the First Stage of each step is the same As
the Last one of the previous stage. This device was possibly first used in [3, pg. 22] and it is called FSAL. The pair shares
effectively only s − 1 stages per step then.

Let yn(x) be the solution of the local initial value problem

y′(x) = f (x, yn(x)), x ≥ xn, yn(xn) = yn.

Then En+1 is an estimate of the error in the local solution yn(x) at x = xn+1. The local truncation error tn+1 associated with
the higher order method is

tn+1 = yn+1 − yn(xn + hn) =

∞−
q=1

hq
n

λq−
i=1

TqiPqi = hp+1
n Φ(xn, yn) + O(hp+1

n )

where

Tqi = Qqi − ξqi/q!

with Qqi algebraic functions of A, b, c and ξqi positive integers. Pqi are differentials of f evaluated at (xn, yn) and Tqi = 0 for
q = 1, 2, . . . , p and i = 1, 2, . . . , λq. λq is the number of elementary differentials for each order and coincides with the
number of rooted trees of order q. It is known that

λ1 = 1, λ2 = 1, λ3 = 2, λ4 = 4, λ5 = 9, λ6 = 20, λ7 = 48, . . . , etc. [4].

The set T (q)
= {Tq1, Tq2, . . . , Tq,λq} is formed by the q-th order truncation error coefficients. It is the usual practice for a

(q − 1)-th order method to have minimized

‖T (q)
‖2 =

 λq−
j=1

T 2
qj.

2. Derivation of RK pairs of orders 5(4)

The construction of an effectively 6-stage FSAL Runge–Kutta pair of orders 5(4) requires the solution of a nonlinear system
of 25 order conditions. λ1 + · · · + λ5 = 17 equations for the higher order formula and λ1 + · · · + λ4 = 8 equations for the
lower order formula. There are 28 unknowns. Namely c2 − c6, b1 − b6, b̂1 − b̂7, a32, a42, a43, a52, a53, a54 and a62 − a65.

We proceed setting c6 = 1 and an arbitrary value for b̂7. Then the only assumption we make is

b · (A + C − Is) = 0 ∈ R1×s (2)

with C =diag(c) and Is ∈ Rs×s the identity matrix. This is the minimal set of simplifying assumptions for pairs of orders
5(4). It is worth mentioning that in the family of methods introduced here

A · c ≠
c2

2
, and b2 ≠ 0,

contrary to the common practice of every 5(4) pair appearing until now [5,3,6]. Expression c2 is to be understood as
component-wise multiplication c ∗ c.

The implicit algorithm that derives a pair of the new family follows. A different approach was given in [7].
The algorithm producing the coefficients of the new pair
Set c6 = 1 and get an arbitrary b̂7 ≠ 0. Select free parameters c2, c3, c4 and b2 ≠ 0. Then

1. Solve b · e = 1, b · c =
1
2 , b · c2 =

1
3 , b · c3 =

1
4 , b · c4 =

1
5 for b1, b3, b4, b5 and b6.

2. Solve b̂ · e = 1, b̂ · c =
1
2 , b̂ · c2 =

1
3 , b̂ · c3 =

1
4 for b̂1, b̂3, b̂4, and b̂5.
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