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a  b  s  t  r  a  c  t

In classical  isostatic  models,  a uniform  crustal  density  is  typically  assumed,  while  disregarding  the  crustal
density  heterogeneities.  This  assumption,  however,  yields  large  errors  in  the  Moho  geometry  determined
from  gravity  data,  because  the  actual  topography  is  not  fully  isostatically  compensated.  Moreover,  the
sub-crustal  density  structures  and  additional  geodynamic  processes  contribute  to the  overall  isostatic
balance.  In  this  study  we  investigate  the  effects  of unmodelled  density  structures  and  geodynamic  pro-
cesses  on  the  gravity  anomaly  and  the  Moho  geometry.  For  this  purpose,  we define  the  residual  isostatic
topography  as  the  difference  between  actual  topography  and  isostatic  topography,  which  is  computed
based  on  utilizing  the  Vening  Meinesz–Moritz  isostatic  theory.  We  show  that  the isostatic  gravity  bias
due  to  disagreement  between  the  actual  and  isostatically  compensated  topography  varies  between  −382
and 596  mGal.  This  gravity  bias  corresponds  to  the  Moho  correction  term  of −16  to  25  km. Numeri-
cal results  reveal  that  the application  of  this  Moho  correction  to  the  gravimetrically  determined  Moho
depths  significantly  improves  the  RMS  fit  of our  result  with  some  published  global  seismic  and  gravimet-
ric  Moho  models.  We  also  demonstrate  that  the  isostatic  equilibrium  at long-to-medium  wavelengths
(up  to  degree  of about  40)  is  mainly  controlled  by a variable  Moho  depth,  while  the topographic  mass
balance  at  a higher-frequency  spectrum  is mainly  attained  by a  variable  crustal  density.

©  2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Gravimetric methods for a Moho determination become more
commonly used especially after the advent of dedicated satellite
gravimetry missions, such as the Challenging Mini-satellite Pay-
load (CHAMP; Reigber et al., 2005), the GRavity field and Climate
Experiment (GRACE; Tapley et al., 2005) and the recent European
Space Agency (ESA) mission, the Gravity field and steady-state
Ocean Circulation Explorer (GOCE; see ESA, 2008). The main rea-
son is a lack or total absence of seismic data in some parts of the
world, while the satellite-derived gravity field has a global cover-
age with well-known stochastic properties. Various methods have
been developed and applied for this purpose; for overview we
refer readers, for instance, to Bagherbandi and Sjöberg (2013). Airy
(1855) assumed a variable depth of compensation, while a differ-
ent isostatic principle was proposed by Pratt (1855). He assumed
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that the topographic masses are compensated by lateral density
changes. Both these isostatic theories assume a local compensa-
tion scheme. Vening Meinesz (1931) modified the Airy’s theory
by introducing a regional isostatic mechanism based on a thin
plate lithospheric flexure model. He presented a concept of the
Moho determination based on assuming that the Bouguer gravity
anomalies are fully isostatically compensated by a variable crustal
thickness (while considering a uniform crustal density). This prin-
ciple was  also adopted in the Parker-Oldenburg’s method for the
gravimetric Moho determination (Oldenburg, 1974; see also Gómez
Oritz and Agarwal, 2005). Later, Moritz (1990) generalized the
Vening Meinesz’s theory for a global compensation and applied a
spherical approximation to the problem. The principal disadvan-
tage of these isostatic concepts is that the actual crustal density
structure is often disregarded. Computations of the Bouguer grav-
ity anomalies and the compensation attraction are realized only
for constant values of the crustal density and the Moho density
contrast. The condition of the complete isostatic equilibrium then
does not hold exactly. Furthermore, the isostatic gravity anomalies
comprise also the gravitational signal of the sub-crustal structures.
A method of filtering the gravitational signature of the mantle het-
erogeneities was presented by Bagherbandi and Sjöberg (2012,

http://dx.doi.org/10.1016/j.jog.2014.11.002
0264-3707/© 2014 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.jog.2014.11.002
http://www.sciencedirect.com/science/journal/02643707
http://www.elsevier.com/locate/jog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jog.2014.11.002&domain=pdf
mailto:rtenzer@sgg.whu.edu.cn
dx.doi.org/10.1016/j.jog.2014.11.002


M.  Bagherbandi et al. / Journal of Geodynamics 83 (2015) 28–36 29

2013). They used the a priori seismic Moho model to treat this
residual gravitational signal in the combined gravimetric–seismic
approach. Bagherbandi et al. (2013) applied this approach for a
global recovery of the Moho geometry. They demonstrated that the
application of the gravity corrections due to major known crustal
density structures (topography, bathymetry, ice, sediments, and
density variations within the crystalline crust) as well as the non-
isostatic correction improved significantly the agreement between
gravimetric and seismic models (by means of the RMS  of their dif-
ferences).

Whereas the signature of crustal density structures is mainly
presented at medium-to-higher frequencies of the gravity field
spectrum, the signal of deep mantle heterogeneities has mostly
a long-wavelength character. These two signals can be separated
to some extent by filtering (cf. Bagherbandi and Sjöberg, 2012).
There are, however, additional aspects which should be taken into
consideration in gravimetric methods for a Moho modeling. The
isostatic mass balance depends on loading and effective elastic
thickness, rigidity, rheology of the lithosphere and viscosity of the
asthenosphere (cf. Watts, 2001). Moreover, geodynamic processes
such as post-glacial rebound, present-day glacial melting, plate
motion, mantle convection and crustal flexure contribute to the
time-dependent isostatic balance (see e.g., Kaban et al., 2003, 2004;
Watts, 2001). A separation of these sources by filtering is, how-
ever, not feasible, because their spectral characteristics are not well
determined. The only possible way to eliminate these signals from
isostatic gravity data is to apply some simplified theoretical models
and assumptions.

Several studies have been conducted to better understand the
spatial and spectral characteristics of the isostatic gravity field.
Tenzer et al. (2009, 2011a,b, 2012, 2014), for instance, evaluated the
gravitational contributions of major known crustal density struc-
tures and investigated their spectral and spatial characteristics.
Bagherbandi (2011) demonstrated that the isostatic equilibrium
can be attained by a variable Moho geometry only at a long-
wavelength spectrum approximately up to a spherical harmonic
degree of 60 (which corresponds to a half-wavelength of 3 arc-deg,
or about 330 km on equator). Different estimates were given in ear-
lier studies. Zhong (1997) reported the long wavelengths larger
than 800 km,  Sjöberg (1998b) mentioned 500 km,  and Haagmans
(2000) estimated that the isostatic equilibrium is attained at long
wavelengths exceeding 200 km.

The spectral characteristics of a particular isostatic model used
for a gravimetric determination of the Moho geometry can be inves-
tigated by comparing power spectra of the seismic and gravimetric
Moho models. Alternatively, spectral analyses can be done for the
actual topography and the respective topography predicted using
an isostatic model. Following this principle, we utilize here the Ven-
ing Meinesz–Moritz (VMM)  isostatic theory in the definition of the
isostatic topography. We  then evaluate deviations of the isostatic
topography from the actual topography, which represent the resid-
ual isostatic topography (RIT). In numerical studies we investigate
some spectral characteristics of global isostatic mechanisms based
on the analysis of the RIT power spectrum. Moreover, the RIT values
are used to study the isostatic equilibrium of the continental and
oceanic crustal structures. Finally, we demonstrate how the RIT cor-
rection can improve the Moho results. Theoretical definitions given
in Section 2 are applied in numerical studies of Section 3. Results
and findings are concluded in Section 4.

2. Methodology

In this section we derive the expressions for computing the RIT
and its effects on the gravity anomaly and the Moho geometry. Since
all expressions are defined in a frequency domain, these quantities

can be computed using harmonic coefficients of global gravity and
crustal structure models.

2.1. Residual isostatic topography

As stated by Flament et al. (2013), the Earth’s topography is
mainly in the isostatic equilibrium by lateral differences in the mass
density structure within the crust and the lithosphere. Following
this isostatic principle, we  define the RIT as a difference between
the actual and isostatic (solid) topography. Hence, we  write

RIT = H − HIT , (1)

where H is the topographic height, and HIT is the respective height
computed based on the applied isostatic model. Furthermore, we
extend the definition of the RIT in Eq. (1) also to the bathymetric
depths. The VMM  isostatic model (Sjöberg, 2009) was utilized to
evaluate the isostatic topography and to determine the RIT effects
on the gravity anomaly and the Moho geometry. It is expected
that the isostatic topography deviates from the actual topogra-
phy mainly due to a simple assumption in the gravimetric–isostatic
model which facilitates a definition of the Bouguer gravity anomaly
(cf. Bagherbandi et al., 2013). The RIT is then attributed to unmod-
elled crustal and sub-crustal density structures as well as additional
geodynamic processes which cannot readily be described by clas-
sical isostatic models.

According to the VMM  isostatic model (cf. Vening Meinesz,
1931; Moritz, 1990), the Moho depth is determined based on the
assumption that the Bouguer gravity anomaly �gB is fully compen-
sated by the attraction AC. The isostatic gravity anomaly �gI is then
defined by (Sjöberg, 2009)

�gI = �gB + AC ≈ 0. (2)

The isostatic equilibrium in Eq. (2) is, however, not fulfilled
exactly due to reasons mentioned in the previous paragraph.

We further decomposed the compensation attraction AC in Eq.
(2) into the mean and residual compensation terms AC0 and dAC
respectively. We  then write

AC = AC0 + dAC

= k

⎡
⎣∫ ∫

�

R−T0∫
R

r2(r − rPt)

l3P
drd� +

∫ ∫
�

R∫
R−T

r2(r − rPt)

l3P
drd�

⎤
⎦ , (3)

where k = G��, G is the Newton’s gravitational constant, �� is
an apparent density anomaly which occurs within a depth interval
between the mean Moho depth T0 and the (actual) Moho depth T
(cf. Moritz, 1990), R is the Earth’s mean radius, and � is the unit
sphere. The Euclidean spatial distance between two points r and
rP is computed from lP =

√
r2P + r2 − 2rrPt,  and the argument t =

cos   is defined for the respective spatial distance  . The Bouguer
gravity anomaly in Eq. (2) is obtained from the gravity anomaly �g
by applying the Bouguer gravity reduction. Hence

�gB = �g  − 2�G�H, (4)

where � is the (average) topographic mass density.
Substituting from Eqs. (3) and (4) to Eq. (2), we  arrive at

�gB + AC = �g − 2�G�H + AC0 + dAC = 0, (5)

The compensation attraction terms AC0 and dAC are derived in
a spectral domain by expanding the integral terms on the right-
hand side of Eq. (3) into a harmonic series. After solving the radial
integral and applying a binomial series, the compensation term AC0
becomes (cf. Sjöberg, 2009)

AC0 = 4�kR
3

[(1 − �0)3 − 1],  (6)
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