

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Hybrid Ishikawa iterative methods for a nonexpansive semigroup in Hilbert space

Nguyen Buong*

Vietnamese Academy of Science and Technology, Institute of Information Technology, 18, Hoang Quoc Viet, q. Cau Giay, Ha Noi, Viet Nam

ARTICLE INFO

Article history: Received 8 May 2010 Accepted 28 February 2011

Keywords: Metric projection Common fixed point Semigroup Nonexpansive mappings

ABSTRACT

In this paper, on the base of the Ishikawa iteration method and the hybrid method in mathematical programming, we give two new strong convergence methods for finding a point in the common fixed point set of a nonexpansive semigroup in Hilbert space.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let H be a real Hilbert space with the scalar product and the norm denoted by the symbols $\langle ., . \rangle$ and $\|.\|$, respectively, and let C be a nonempty closed and convex subset of H. Denote by $P_C(x)$ the metric projection from $x \in H$ onto C. Let T be a nonexpansive self-mapping on C, i.e., $T: C \to C$ and $\|Tx - Ty\| \le \|x - y\|$ for all $x, y \in C$. We use F(T) to denote the set of fixed points of T, i.e., $F(T) = \{x \in C: x = Tx\}$. We know that F(T) is nonempty, if C is bounded, for more details see [1]. For finding a fixed point of a nonexpansive self-mapping on C, Ishikawa [2] proposed the following method:

$$x_0 \in C$$
 any element,
 $y_k = \alpha_k x_k + (1 - \alpha_k) T x_k$, (1.1)
 $x_{k+1} = \beta_k x_k + (1 - \beta_k) T y_k$,

where $\{\alpha_k\}$ and $\{\beta_k\}$ are two sequences of positive real numbers. When $\alpha_k = 1$ for all $k \ge 0$, we have the iterative process:

$$x_0 \in C$$
 any element,
 $x_{k+1} = \beta_k x_k + (1 - \beta_k) T x_k,$ (1.2)

introduced by Mann [3] in 1953. Both processes (1.1) and (1.2) have only weak convergence, in general (see [4] for an example). The formulation of process (1.2) is simpler than that of (1.1) and a convergence theorem for process (1.2) may possibly lead to a convergence theorem for (1.1) provided that the sequence $\{\alpha_k\}$ satisfies certain appropriate conditions. However, the introduction of the process (1.1) has its own right. As a matter of fact, process (1.2) may fail to convergence while process (1.1) can still converge for a Lipschitz pseudocontractive mapping [5].

^{*} Tel.: +84 4 37564405. E-mail address: nbuong@ioit.ac.vn.

To obtain strong convergence for (1.1), Martinez-Yanes and Xu [6] proposed the following hybrid-Ishikawa iteration process:

$$x_{0} \in C \quad \text{any element,}$$

$$z_{k} = \alpha_{k}x_{k} + (1 - \alpha_{k})Tx_{k},$$

$$y_{k} = \beta_{k}x_{k} + (1 - \beta_{k})Tz_{k},$$

$$C_{k} = \{z \in C : \|y_{k} - z\|^{2} \le \|x_{k} - z\|^{2} + (1 - \alpha_{k})(\|z_{k}\|^{2} - \|x_{k}\|^{2} + 2\langle x_{k} - z_{k}, z \rangle)\},$$

$$Q_{k} = \{z \in C : \langle x_{k} - z, x_{0} - x_{k} \rangle \ge 0\},$$

$$x_{k+1} = P_{C_{k} \cap O_{k}}(x_{0}), \quad k \ge 0,$$

$$(1.3)$$

where $\{\alpha_k\}$ and $\{\beta_k\}$ are two sequences in [0, 1] satisfying some conditions.

Let $\{T(t): t > 0\}$ be a nonexpansive semigroup on C, that is,

- (1) for each t > 0, T(t) is a nonexpansive mapping on C;
- (2) T(0)x = x for all $x \in C$;
- (3) $T(t_1 + t_2) = T(t_1) \circ T(t_2)$ for all $t_1, t_2 > 0$;
- (4) for each $x \in C$, the mapping T(.)x from $(0, \infty)$ into C is continuous.

Denote by $\mathcal{F} = \bigcap_{t>0} F(T(t))$, the set of common fixed points for the semigroup $\{T(t): t>0\}$. We know [7] that \mathcal{F} is a closed convex subset in H and $\mathcal{F} \neq \emptyset$ if C is compact (see, [8]).

For finding an element $p \in \mathcal{F}$, Nakajo and Takahashi [7] introduced an iteration procedure as follows:

 $x_0 \in C$ any element,

$$y_{k} = \alpha_{k} x_{k} + (1 - \alpha_{k}) \frac{1}{t_{k}} \int_{0}^{t_{k}} T(s) x_{k} ds,$$

$$C_{k} = \{ z \in C : ||y_{k} - z|| \le ||x_{k} - z|| \},$$

$$Q_{k} = \{ z \in C : \langle x_{k} - z, x_{0} - x_{k} \rangle \ge 0 \},$$

$$x_{k+1} = P_{C_{k} \cap O_{k}}(x_{0})$$

$$(1.4)$$

for each $k \ge 0$, where $\alpha_k \in [0, a]$ for some $a \in [0, 1)$ and $\{t_k\}$ is a positive real number divergent sequence. Under the conditions on $\{\alpha_k\}$ and $\{t_k\}$, the sequence $\{x_n\}$ defined by (1.4) converges strongly to $P_{\mathcal{F}}(x_0)$.

In 2007, He and Chen [9] considered for the nonexpansive semigroup an iteration procedure:

$$x_{0} \in C$$
 any element,
 $y_{k} = \alpha_{k}x_{k} + (1 - \alpha_{k})T(t_{k})x_{k},$
 $C_{k} = \{z \in C : ||y_{k} - z|| \le ||x_{k} - z||\},$
 $Q_{k} = \{z \in C : \langle x_{k} - z, x_{0} - x_{k} \rangle \ge 0\},$
 $x_{k+1} = P_{C_{k} \cap O_{k}}(x_{0})$ (1.5)

for $k \ge 0$, where $\alpha_k \in [0, a)$ for some $a \in [0, 1)$ and $t_k \ge 0$, $\lim_{k \to \infty} t_k = 0$, then the sequence $\{x_k\}$ in (1.5) converges to $P_{\mathcal{F}}(x_0)$. In 2008 Saejung [10] showed that the proof of the main result in [9] is very questionable and corrected this fact under new condition on t_k : $\liminf_k t_k = 0$, $\limsup_k t_k > 0$, and $\lim_k (t_{k+1} - t_k) = 0$.

Obviously, if C = H, then C_k and Q_k in (1.3)–(1.5) are two halfspaces. Then, at each step k, having x_k and y_k , we can find x_{k+1} in the algorithms by the technique in [11] (Section 3, the algorithm). A big difficulty is appeared in the case that $C \neq H$. It is easy to see that if C is a proper subset of H, then C_k and Q_k are not two halfspaces. Then, a natural question is posed: how to construct the closed convex subsets C_k and Q_k for a fixed closed convex subset C and if we can express x_{k+1} in the above algorithms in a similar form as in [11]. Obviously, the answer is positive, if C_k and C_k in these methods are also two halfspaces. This idea brings us to consider two new methods based on the Ishikawa's iteration with a little modification and the Solodov-Svaiter's method in [11], where C_k and C_k will be replaced by two halfspaces, even if C_k is a proper closed convex subset of C_k . To do this, we extend the nonexpansive mapping C_k to C_k in these methods are also two halfspaces, even if C_k is a proper closed convex subset of C_k and C_k and C_k will be replaced by two halfspaces, even if C_k is a proper closed convex subset of C_k and C_k and C_k is a nonexpansive mapping and hence C_k is also nonexpansive. Moreover, since C_k is a mapping from C_k into C_k and C_k we can easily verify that C_k is also nonexpansive.

Download English Version:

https://daneshyari.com/en/article/468835

Download Persian Version:

https://daneshyari.com/article/468835

Daneshyari.com