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a b s t r a c t

The gravity anomalies at sea level can be used to validate the satellite gravity gradiometry data. Validation
of such a data is important prior to downward continuation because of amplification of the data errors
through this process. In this paper the second-order radial derivative of the extended Stokes’ formula is
employed and the emphasis is on least-squares modification of this formula to generate the second-order
radial gradient at satellite level. Two methods in this respect are proposed: (a) modifying the second-order
radial derivative of extended Stokes’ formula directly, and (b) modifying extended Stokes’ formula prior
to taking the second-order radial derivative. Numerical studies show that the former method works well
but the latter is very sensitive to the proper choice of the cap size of integration and degree of modification.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Satellite gravity gradiometry (SGG) is a technique to mea-
sure second-order derivatives of the Earth’s gravity field from
space. It is expected to determine the geopotential coefficients
to higher degrees and orders than those are obtained from other
satellite techniques. The SGG data can be used to study the geo-
physical/geodynamical phenomena as well. Quality of the data is
important, as occurrence of any error in the data will lead to a
wrong interpretation and unrealistic conclusions for the phenom-
ena. Therefore, the quality of SGG data should be controlled prior
to use, or in other words, the data should be validated.

Different methods of validating SGG data have been proposed. A
simple way could be the direct comparison of the real SGG data with
the synthesized gravitational gradients using an existing Earth’s
gravitational model (EGM). Another idea is to use regional grav-
ity data to generate the gradients at satellite level. Haagmans et al.
(2002) and Kern and Haagmans (2004) used the extended Stokes
formula (ESF) and extended Hotine formula to generate the gravi-
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tational gradients using terrestrial gravity data. Denker (2002) used
the least-squares spectral combination technique to generate and
validate the gravitational gradients. Bouman et al. (2003) have set
up a calibration model based on instrument (gradiometer) charac-
teristics to validate the measurements. Mueller et al. (2004) used
the terrestrial gravity anomalies to generate the gravitational gra-
dients, and after that Wolf (2007) investigated the deterministic
approaches to modify the integrals and validate the SGG data. In
fact, the spectral weighting scheme (Sjöberg, 1980, 1981; Wenzel,
1981) was used by Wolf (2007). Stochastic methods of modifying
Stokes’ formula, or in other words leastsquares modification (LSM)
can be used for the extended Stokes formula as well; see Sjöberg
(1984a,b, 1991, 2003). Least-squares collocation can be used for val-
idation purposes. Tscherning et al. (2006) considered this method
and concluded that the gradients can be predicted with an error
of 2–3 mE in the case of an optimal size of the collection area
and optimal resolution of data. Zielinsky and Petrovskaya (2003)
proposed a balloon-borne gradiometer to fly at 20–40 km altitude
simultaneously with satellite mission and proposed downward
continuation of satellite data and comparing them with balloon-
borne data. Bouman and Koop (2003) presented an along-track
interpolation method to detect the outliers. Their idea is to compare
the along-track interpolated gradients with measured gradients.
If the interpolation error is small enough the differences should
be predicted reasonably by an error model. Pail (2003) proposed
a combined adjustment method supporting high quality gravity
field information within the well-surveyed test area for contin-
uation of local gravity field upward and validating the SGG data.
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Bouman et al. (2004) stated that there are some limitations in gen-
erating the gravitational gradients using terrestrial gravimetry data
and EGMs. When an EGM model is used, high degrees and orders
should be taken into account and the recent EGMs seem to be
able to remove the greater part of the systematic errors. In their
regional approach they concluded that the bias of the gradients can
accurately be recovered using least-squares collocation. Also, they
concluded that the method of validation using high–low satellite-
to-satellite tracking data fails unless a higher resolution EGM is
available. Kern and Haagmans (2004) and Kern et al. (2005) pre-
sented an algorithm for detecting the outliers in the SGG data in
the time domain.

The second-order radial derivative (SORD) of extended Stokes’
kernel (ESK) is isotropic and azimuth-independent. The isotropy is
an important property in modifying ESF otherwise it will not be
an easy task. Two methods of generating the SGG data are inves-
tigated in this paper, in the first method (Method 1), the SORD of
ESF is modified (derivative prior to modification) and in the sec-
ond method (Method 2) ESF is modified and after that the SORD
is taken (modification prior to derivative). Modification of ESF and
its SORD based on the biased LSM (BLSM), unbiased LSM (ULSM)
and optimum LSM (OLSM) is the main subject of this study which
is a new issue in the scope of SGG. Obviously, Methods 1 and 2 will
not deliver the same results, but we are going to test in which cases
these methods are comparable. We select the SORD of ESF as its ker-
nel function is isotropic, in such a case, we can use both methods to
generate the second-order radial gradient and compare the results.
The importance of this study is mostly related to Method 2 although
Method 1 (based on the LSM) is new as well. If we can find the cases,
where Method 2 performs well, the method can be used to some
how modify the horizontal derivatives of ESF having non-isotropic
kernels, to generate the other gradients. A similar study was done
by Wolf (2007) but just based on deterministic approaches. How-
ever we concentrate on generating the second-order radial gradient
based on the LSM approaches.

The disturbing potential can be expressed by an integral which is
well known as ESF. This integral formula is (Heiskanen and Moritz,
1967):

T(P) = R

4�

∫ ∫
�

S(r, )�g(Q )d�, (1a)

where R is the radius of the reference sphere, r is the geocentric dis-
tance at computation point P, is the geocentric angle between the
computation point P and the integration point Q with the following
expression:

cos = cos � cos �′ + sin � sin �′ cos(�′ − �) (1b)

and � and � are the co-latitude and longitude of P and �′ and �′ are
of the integration point Q. � is the unit sphere,�g (Q) is the gravity
anomaly at sea level and
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n=2
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2

˝n(r)Pn(cos ), (1c)

is the spectral form of ESK with the spectrum:

˝n(r) = 2
n− 1

(
R

r

)n+1
. (1d)

Eq. (1a) shows that the integration should be performed glob-
ally, which means that �g (Q) with a global coverage is required.
Therefore we should look for an approach to modify the integral in
such a way that the contribution of the far zone data is minimized.
Different methods for modifying Stokes’ formula have been pre-
sented, but here the concentration is on the stochastic approaches
of Sjöberg (1984a,b). In fact, the theory behind this part of the study

was presented by him, but just on Stokes’ integral for geoid deter-
mination. However, we are going to test the capability of these
stochastic approaches in modifying ESF and its SORD and gener-
ating the SGG data for validation purposes. In the following we
investigate the LSM of ESF.

2. LSM of ESF

The general estimator of the disturbing potential based on ESF is
very similar to the general geoid estimator of Sjöberg (2003); and
the only difference is related to the kernel function and its spec-
trum. Let us start the discussion by this general disturbing potential
estimator:

T̃(P) = R
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where L is the maximum degree of modification, bn(r) is a param-
eter which differs with the type of the LSM, and

SL(r, ) = S(r, ) −
L∑
n=2

2n+ 1
2

sn(r)Pn(cos ), (2b)

is the modified ESF and sn(r) are the modification parameters,
which are estimated. The closed form formula of this function is
(Heiskanen and Moritz, 1967, p. 93, Eq. 2-162):
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where

l =
√
r2 + R2 − 2Rr cos , (2d)

is the spatial distance between the points P and Q.�gEGM
n (P) is the

Laplace harmonic expansion of�g (P) (Heiskanen and Moritz, 1967,
p. 97). In order to show from which sources the gravity anomaly is
derived we separate them into �gT for the terrestrial and �gEGM

for the EGM based data.The LSM parameters sr(r) are derived based
on solving the following system of equations (Sjöberg, 2003):

M∑
r=2

akrsr(r) = hk(r), k = 2,3, . . . ,M, (2e)

where mathematical forms of akr and hk (r) depend on type of the
LSM which is used.

Eq. (2e) differs with the system of equations in which the
modification parameters of the Stokes formula is used for geoid
determination. As Eq. (2e) shows both sets of the modification
parameters and the truncation coefficients are altitude-dependent
and variable with the elevation of the computation point P. We
will investigate the changes in these parameters and coefficients
in Section 4. The mathematical formula of the elements of coeffi-
cient matrix and the right hand side vector of Eq. (2e) depend on
the method of the LSM. In the following we summarized them in
three propositions.

Proposition 1. The BLSM parameters for the disturbing poten-
tial estimator at satellite level are derived by setting bn(r) = sn(r)
and solving the system of equations Eq. (2e) with the following
elements (Sjöberg, 2003):

akr = ark = (�2
r + dcr)ıkr − Ekr( 0)�2

r − Erk( 0)�2
k

+
∞∑
n=2
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