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An improved method is presented to determine the threshold boundary velocity required to entrain sediments
under waves, using the non-dimensional group settling velocity of sediments ranging from very fine sand to
granules (0.1–3.3 mm), together with a dimensionless boundary velocity. In combination with a more accurate
method to calculate the actual boundary velocity under linear as well as non-linear waves, this allows sediment
entrainment to be predicted from deep water up to the breaker zone.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Numerous studies have been undertaken on the threshold of
sediment entrainment under ocean waves (e.g., Bagnold, 1946;
Manohar, 1955; Eagleson et al., 1958; Horikawa and Watanabe,
1967; Rance and Warren, 1968; Komar and Miller, 1973, 1975;
Madsen and Grant, 1975; Sleath, 1978; Hammond and Collins,
1979; Hallermeier, 1980; Rigler and Collins, 1983; Soulsby and
Whitehouse, 1997; Green, 1999; You, 2000; Le Roux, 2001; Paphitis
et al., 2001; You and Yin, 2006). Most of these have focused on the
near-bed water particle velocity, ideally measured at the top of the
boundary layer where the vertical component of orbital water parti-
cle motion reduces to zero. However, because the thickness of the
boundary layer cannot be predicted with accuracy, most measure-
ments were probably taken either above the boundary layer, where
water particle motion was still ellipsoidal, or below its top, where
the measured velocity would have been less than the actual bound-
ary velocity. As a consequence, plots of predicted against measured
velocities inevitably display a large scatter of data points for all em-
pirical equations. The method presented in this paper, being based
on published data, is no exception, but shows an improved correla-
tion between predicted and measured critical boundary velocities
and also provides a way to determine the actual boundary velocity
under both linear and non-linear waves.

2. Methodology

2.1. Critical boundary velocity

Many of the existing threshold equations incorporate either the
orbital diameter do (Bagnold, 1946; Komar and Miller, 1973, 1975) or
the water particle semi-excursion at the top of the boundary layer
(Wang, 2007), but others employed a Shields-type parameter (Rance
and Warren, 1968; Soulsby and Whitehouse, 1997). Le Roux (2001)
used a dimensionless boundary velocity (Udδ) in combination with the
dimensionless settling velocity (Udw) of spheres having the same
diameter as the median sediment size. The results were compared
with the equations of Bagnold (1946), Manohar (1955), Komar and
Miller (1973, 1975), Hammond and Collins (1979), and Soulsby and
Whitehouse (1997) using the data sets of Bagnold (1946), Manohar
(1955), and Hammond and Collins (1979). Although it showed a signif-
icant improvement, this equation was not dimensionally correct, as it
employed a second order polynomial trend-line to further improve
the original, dimensionally correct equation. The use of a dimensionless
sphere settling velocity is also not ideal, because the group settling
velocity of differently shaped grains (which would directly control
their entrainment behaviour) is significantly different from the settling
velocity of individual spheres (Le Roux, 2014).

You and Yin (2006) subsequently published a unified equation to
determine the threshold of sediment entrainment and sheet flow
under waves, which gives better results than that of Le Roux (2001)
for the samedata sets. However, their equation is also not dimensionally
correct, in that they use the “dimensionless” term (s− 1), where s is in
fact the sediment density and 1 thewater density. Thismakes the use of
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their equations questionable in the case of entrainment by waves in sea
water instead of fresh water.

Recently, Le Roux (2014) published equations to determine the
settling velocity of individual, differently shaped clasts with known
axial dimensions, as well as the group settling velocity of sieve-sized
sediments (subscript v) with unknown axial dimensions. The latter is
given by

log10Udwv ¼ 0:0195 log10Ddvð Þ5−0:0075 log10Ddvð Þ4−0:1679 log10Ddvð Þ3
−0:1936 log10Ddvð Þ2 þ 1:9606 log10Ddvð Þ−1:2582;

ð1Þ

where Udwv is the dimensionless group settling velocity, Dv and Ddv are
the grain size and dimensionless (subscript d) grain size as determined

by sieve analysis, respectively, given by Ddv ¼ Dv

ffiffiffiffiffiffiffiffi
ρgργ

μ2
3
q

, ρ is the fluid

density, g is the acceleration due to gravity, ργ is the submerged density
(grain density minus fluid density), and μ is the dynamic fluid viscosity.
The settling velocity is non-dimensionalized by

Udwv ¼ Uwv �
ffiffiffiffiffiffiffiffiffiffiffi
ρ2

μgργ

3

s
: ð2Þ

The dimensionless settling velocity can be plotted against a dimen-
sionless boundary velocity, established by Le Roux (2001) as

Udδ ¼
Uδ

ffiffiffiffiffiffi
ρμ
T

r
gDργ

; ð3Þ

where Uδ is the actual boundary velocity and T is the wave period.
Due to the difficulty in measuring sediment entrainment thresholds

under field conditions, especially in the presence ofmarine currents and
other complicating elements, the vast majority of studies have been
carried out in the laboratory. Bagnold (1946), for example, studied a
bed of particles resting on an oscillating plate that was submerged in a
tank of water, observing the frequency and amplitude of the oscillation
required to entrain the grains. Unfortunately, most of these studies did
not present the actual data, except on graphs that are difficult to read
accurately. Therefore, three widely cited case studies with usable data
were examined here, namely those of Bagnold (1946), Manohar (1955),
and Hammond and Collins (1979).

Plotting Udwv against the measured critical boundary velocities
(Udδcrit) for these data sets (Fig. 1), shows that the dimensionless critical
boundary velocity can be found by

Udδcrit ¼ −0:0083 lnUdwv þ 0:0247: ð4Þ

Finally, the critical boundary velocity is given by

Uδcrit ¼
0:848UdδcritgDvργffiffiffiffiffiffi

ρμ
T

r : ð5Þ

The above-mentioned data sets include 209 measurements with
grain sizes varying from 0.1 to 8 mm, densities between 1.05 and
7.9 g cm−3, boundary velocities between 4.45 and 47.26 cm s−1, and
wave periods between 0.76 and 26.1 s. Fig. 2 compares the boundary
velocities predicted by Eq. (5) with the measured velocities. The corre-
lation coefficient R2 is 0.8044, with a 1:1 relationship between the
trend-line of the observed and predicted velocities.

The mean percentage error (MPE), given by

MPE ¼
100 Uδcritm−Uδcritp

� �
Uδcritm

; ð6Þ

where Udδcritm and Udδcritp are the measured and predicted critical
boundary velocities, respectively, is 2.95%, with a maximum positive
error of 39.48% and maximum negative error of −123.83%. The latter
value is that of an obviously anomalous measurement, for which the
You and Yin (2006) unified equation also yields a very large error of
−222.83%. Without this data point the maximum negative error
would be −38.9% for Eq. (5) and −70.12% for You and Yin (2006).
TheMPE for the latter authors is 6.76% and their ratio between themea-
sured and predicted critical boundary velocities is 0.8736, meaning that
their equation generally underestimates the critical boundary velocity.
For the original equation of Le Roux (2001), the MPE is 5.67%, with a
maximum positive error of 27.99% and a maximum negative error of
−159.77% (−123.21% if the anomalous value is excluded). Eq. (5)
thus yields the lowest MPE and lowest maximum absolute error of
39.48%, compared to maximum absolute errors of 70.12% and 123.21%
for You and Yin (2006); and Le Roux (2001), respectively, again exclud-
ing the anomalous value.

2.2. Actual boundary velocity

Although Eq. (5) provides away to obtain the criticalwave boundary
velocity, the actual boundary velocity under different wave climates is
an entirely different matter, especially under field conditions. To know
whether sediments will be entrained in any particular water depth for
a specific set of wave conditions, it is necessary to be able to predict
the real boundary velocity at that specific depth. Only if the latter
exceeds the critical boundary velocity for the specific sediment size
and density, will entrainment take place.

Fig. 1. Plot of dimensionless settling velocity (Eqs. (1) and (2)) against dimensionless crit-
ical boundary velocity (Eq. (3)).
Data from Bagnold (1946), Manohar (1955), and Hammond and Collins (1979).

Fig. 2. Plot of predicted (Eq. (5)) against measured critical boundary velocity.
Data from Bagnold (1946), Manohar (1955), and Hammond and Collins (1979).
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