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a b s t r a c t

A set S of vertices of a connected graph G is convex, if for any pair of vertices u, v ∈ S, every
shortest path joining u and v is contained in S. The convex hull CH(S) of a set of vertices S
is defined as the smallest convex set in G containing S. The set S is geodetic, if every vertex
of G lies on some shortest path joining two vertices in S, and it is said to be a hull set if its
convex hull is V (G). The geodetic and the hull numbers of G are theminimum cardinality of
a geodetic and a minimum hull set, respectively. In this work, we investigate the behavior
of both geodetic and hull sets with respect to the strong product operation for graphs. We
also establish some bounds for the geodetic number and the hull number and obtain the
exact value of these parameters for a number of strong product graphs.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The process of rebuilding a network modelled by a connected graph is a discrete optimization problem, consisting in
finding a subset of vertices of cardinality as small as possible, which, roughly speaking, would allow us to store and retrieve
the whole graph. One way to approach this problem is by using a certain convex operator. This procedure has attracted
much attention since it was shown by Farber and Jamison [1] that every convex subset in a graph is the convex hull of its
extreme vertices if and only if the graph is chordal and contains no induced 3-fan. From then on, a number of variants of this
approach have been proposed [2,3]. One of them, consists in using, instead of the convex hull operator, the closed interval
operator, i.e., considering geodetic sets instead of hull sets [4,5]. Unfortunately, computing geodetic sets and hull sets of
minimum cardinality, are known to be NP-hard problems for general graphs [6,7]. This fact has motivated the study of these
two problems for graph classes which can be obtained by means of graph operations, such as the Cartesian product [8–10],
composition [11] and join [12]. Let us notice that in these graphs, information about factor graphs can be used to obtain
geodetic and hull sets and to compute geodetic and hull numbers.

In this work, we study geodetic and hull sets of minimum cardinality, in strong product graphs. This graph operation
has been extensively investigated in relation to a wide range of subjects, including: connectivity [13], pancyclicity [14,15],
chromaticity [16], bandwidth [17], independency [18,19] and primitivity [20]. Section 2 is devoted to introduce the main
definitions and notation used throughout the paper. In Section 3,we study the behavior of geodetic and hull setswith respect
to the strong product operation. In Section 4, a number of lower and upper sharp bounds for the geodetic number and the
hull number of the strong product of two graphs are presented. Finally, the last section is devoted to obtain the exact value
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Table 1
Hull number and geodetic number of some graph classes.

G Pn C2l C2l+1 T h
n Kn Kp,n−p S1,n−1 W1,n−1

h(G) 2 2 3 h n 2 n − 1
 n−1

2


g(G) 2 2 3 h n min{4, p} n − 1

 n−1
2


of the geodetic number and the hull number of the strong product of some basic families of graphs, such as paths, complete
graphs and cycles.

2. Graph theoretical preliminaries

Weconsider only finite, simple, connected graphs. For undefined basic conceptswe refer the reader to introductory graph
theoretical literature, e.g., [21]. Given vertices u, v in a graph G we let dG(u, v) denote the distance between u and v in G.
When there is no confusion, subscripts will be omitted. The diameter diam(G) of G is the maximum distance between any
two vertices of G. An x − y path of length d(x, y) is called an x − y geodesic. The closed interval I[x, y] consists of x, y and
all vertices lying in some x − y geodesic of G. For S ⊆ V (G), the geodetic closure I[S] of S is the union of all closed intervals
I[u, v] over all pairs u, v ∈ S, i.e., I[S] =


u,v∈S I[u, v]. The set S is called geodetic if I[S] = V (G) and it is said to be convex

if I[S] = S. The convex hull CH(S) of S is the smallest convex set containing S. If we define I0[S] = S, I i[S] = I[I i−1
[S]] for

every i ≥ 1, then CH(S) = Ir [S], for some r ≥ 0. The set S is said to be a hull set if its convex hull CH(A) is the whole vertex
set V (G). The geodetic number g(G) and the hull number h(G) are the minimum cardinality of a geodetic set and a hull set,
respectively [22,23]. Certainly, every geodetic set is a hull set, and hence, h(G) ≤ g(G). In Table 1, both the geodetic number
and the hull number of some families of graphs are shown.

Remark 1. In the rest of this paper, Pn, Cn and Kn denote the path, cycle and complete graph of order n, respectively. In all
cases, unless otherwise stated, the set of vertices is {0, 1, . . . , n− 1}. In addition, Kp,n−p, S1,n−1,W1,n−1 denote the complete
bipartite graph (being its smallest stable set of order p ≥ 2), star and wheel of order n, whereas T h

n represents an arbitrary
tree of order nwith h leaves. Finally, in the sequel, G and H denote a pair of nontrivial connected graphs.

A vertex v ∈ V (G) is a simplicial vertex if its neighborhood N(v) = {u : uv ∈ E(G)} induces a complete subgraph. It is
easily seen that every hull set, and hence every geodetic set, must contain the set Ext(G) of simplicial vertices of G. A graph
G is called extreme geodesic if the set of its simplicial vertices is geodetic (see [24]). Note that, in this case, (1) the set Ext(G)
is the unique minimum geodetic set (and also the unique minimum hull set) and (2) h(G) = g(G) = |Ext(G)|. Trees and
complete graphs are basic examples of extreme geodesic graphs.

3. Strong product of graphs: general results

The strong product of graphs G and H , denoted by G � H , is the graph with the vertex set V (G) × V (H) = {(g, h) : g ∈

V (G), h ∈ V (H)} in which vertices (g, h) and (g ′, h′) are adjacent whenever (1) g = g ′ and hh′
∈ E(H), or (2) h = h′ and

gg ′
∈ E(G), or (3) gg ′

∈ E(G) and hh′
∈ E(H).

Let S be a set of vertices in the strong product G�H of graphs G andH . The projection of S onto G, denoted pG(S), is the set
of vertices g ∈ V (G) for which there exists a vertex (g, h) ∈ S. Similarly, the projection pH(S) of S ontoH is the set of vertices
h ∈ V (H) for which there exists a vertex (g, h) ∈ S. For example, if S = {(g, h), (g ′, h′)}, then pG(S) = {g, g ′

} and pH(S) =

{h, h′
}. The most important metric property of the strong product operation, relating the distance between two arbitrary

vertices of a strong product graph to the distances between the corresponding projections in its factors, is shown next.

Lemma 1 ([25]). If (g, h), (g ′, h′) ∈ V (G�H), then dG�H((g, h), (g ′, h′)) = max{dG(g, g ′), dH(h, h′)}. Hence, diam(G�H) =

max{diam(G), diam(H)}.

In this section, we firstly present some lemmas in order to show the behavior of the closed interval operator with respect
to the strong graph operation, and next, we analyze in which way, both geodetic and hull sets of the strong product of two
graphs, are related to geodetic and hull sets of each factor, in both directions.

Lemma 2. Let u = (g, h), v = (g ′, h′) ∈ V (G � H) such that dG�H(u, v) = dG(g, g ′) = l. If γ is a (g, h) − (g ′, h′) geodesic,
then the projection of γ onto G is a g − g ′ geodesic of length l.

Proof. If V (γ ) = {(g, h), (g1, h1), . . . , (gl−1, hl−1), (g ′, h′)}, then its projection into G is pG(V (γ )) = {g, g1, . . . , gl−1, g ′
}.

Since dG�H((g, h), (g ′, h′)) = dG(g, g ′), pG(V (γ )) does not contain repeated vertices, which means that every pair of
consecutive vertices are adjacent, i.e., pG(V (γ )) is the vertex set of a g − g ′ geodesic in G. �

Lemma 3. Let u = (g1, h1), v = (g2, h2) ∈ V (G � H) such that dG�H(u, v) = dG(g1, g2) = l. Then,

I[u, v] = {(g, h) : g ∈ I[g1, g2], dH(h1, h) ≤ dG(g1, g), dH(h, h2) ≤ dG(g, g2)}.
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