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Numerical modeling is a well established tool in rock mechanics studies investigating a wide range of problems.
Implicit methods for solving linear equations have the advantage of being unconditionally stable, while explicit
methods, although limited by the time step, are often used because of their limited memory demand, their
scalability in parallel computing, and simple implementation of complex boundary conditions. In numerical
modeling of explicit elastoplastic dynamics where the time step is limited by the material density, mass scaling
techniques can be used to overcome this limit and significantly reduce computation time. While often used, the
effect of mass and time scaling and how it may influence the numerical results is rarely-mentioned in publica-
tions, and choosing the right scaling technique is typically performed by trial and error. To our knowledge, no
systematic studies have addressed howmass scalingmight affect the numerical results. In this paper, we present
results from an extensive and systematic study of the influence of mass and time scaling on the behavior of a
variety of rock-mechanical models.We employ a finite difference scheme tomodel uniaxial and biaxial compres-
sion experiments using differentmass and time scaling factors, and with physical models of increasing complex-
ity up to a cohesion-weakening frictional-strengthening model (CWFS). We also introduce a normalized energy
ratio to assist analyzingmass scaling effects. We find the testedmodels to be less sensitive to time scaling than to
mass scaling, so mass scaling has higher potential for decreasing computational costs. However, we also demon-
strate that mass scaling may lead to quantitatively wrong results, so care must be taken in interpreting stress
values when mass scaling is used in complicated rock mechanics simulations. Mass scaling significantly
influences the stress–strain response of numerical rocks because mass scaling acts as an artificial hardening
agent on rock deformation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The field of numerical rock mechanics is well-established, with
many different numerical methods applied to a wide range of problems
(e.g. Rozhko, 2007; Popov and Sobolev, 2008; Galvan and Miller, 2013;
Choi et al., 2013; Azevedo and Lemos, 2013; Tang et al., 2013). Continu-
um mechanical approaches are typically applied if problems relate to
the dynamical response of a rockmass. In these cases, when the interest
is on the time evolution of the rock deformation, and not just its final
state, there are mainly two approaches: either solving the problem of
elastoplastic deformation in a full non-equilibrium dynamical way,
explicitly describing the dynamic part of the equations, or alternatively
describing the process as a series of small equilibrium steps, implicitly
accounting for the dynamics. The latter approach is also commonly
known as quasi-static deformation, where the load is incrementally ap-
plied and the corresponding equilibrium state for every loading step is

successively computed until the full load is reached. If the full dynamical
solution is required, the problem is discretized in time by an explicit or
implicit scheme. While most implicit time discretization schemes are
unconditionally stable with respect to time and space discretization,
these schemes are burdened by high computational costs and memory
demands. This is particularly the case in 3D where implicit solutions
require solving a prohibitively large system of linear equations. Explicit
time descritization schemes do not require a LSE (linear system of
equations) solver, does not impose any additional difficulties on
parallelization, and its memory demand grows linearly with size of
the problem. An additional advantage is that complex kinematic bound-
ary conditions, such as sliding, can be easily implemented. The primary
disadvantage of explicit Eulerian schemes is a limit on the maximum
time step by the Courant–Friedrichs–Levy (CFL) stability criteria, and
mass scalingmethods have been developed to overcome this limitation
(e.g. Zhang and Zhang, 2009; Schmidt and Hattel, 2005; Wang et al.,
2004).

Scaling techniques are not necessary, and even obstructive, if the
dominant time scale of the problem under consideration is in the
range of the rock deformation time scale as, for example, in the case of
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seismic wave propagation, where information would be lost. The dom-
inant time scale of coupled fluid–rock interactions, on the other hand, is
orders of magnitude longer than rock deformation alone, making com-
putation times prohibitively long if no scaling techniques are used
(Cundall, 1982).

Themaximum time step for an explicit solution scheme is limited by
the P-wave velocity Vp and the CFL-criteria. For a domainwith grid spac-
ing dx, dy and dz it is (Virieux, 1986):

dt ≤ Vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
dx2

þ 1
dy2

s !−1

in 2Dð Þ ð1Þ

and

dt ≤ Vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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þ 1
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where

Vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 2G

ρ0

s
ð3Þ

where λ is the first Lame constant,G is shearmodulus and ρ0 is material
density. By replacing the material density ρ0 with a computational den-
sity ρc=α ∗ ρ0 to introduce a scaling factorα N 1, themaximumallowed
time step is increased, and is termed mass scaling (e.g. Jung, 1998;
Papeleux and Ponthot, 2002; Kang et al., 2004; Carlberger and Stigh,
2007; Tu and Andrade, 2008; Kazanci and Bathe, 2012). The real mate-
rial density is not relevant for quasi-static processes as long as inertial
forces are low compared to other forces acting, and computational den-
sity does not affect body forces. Computational densities can be chosen
to be much larger than typical crustal densities ranging from2000kg

�
m3

and3000kg
�
m3, (e.g. Tang et al., 2013; Henrard et al., 2007;Mohebbi and

Albarzadeh, 2010; Schaare et al., 2008).
Another approach to reduce computation times of numerical rock

deformation processes is simply to increase the loading rate, an ap-
proach known as time scaling (e.g. Wang et al., 2004; Lorentzen et al.,
1998).

While both methods are widely used in geotechnics and
geomechanics simulations since the pioneering work of Cundall
(1982), no systematic study on these scaling techniques, and their ef-
fects on the simulation results, have been performed in a geotechnical
context.

Several studies have looked at mass scaling in an engineering con-
text, such as Chung et al. (1998), who studied the influence ofmass scal-
ing on the dynamics of a Finite Element (FE) simulation of metal
deformation. A criterion was developed in the work of Chung to detect
critical use ofmass scaling, and a similar criterionwas confirmedbyKim
et al. (2002) where they studied hydro-forming processes of metal and
compared implicit and explicit schemes. Cocchetti et al. (2013) and
Olovsson et al. (2005) presented more complex adaptive mass scaling
methods based on the filtering of high frequency contributions in the
velocity, which are damped without influencing macroscopic deforma-
tion. In adaptive mass scaling, the computational higher density is ad-
justed based on the outcome of the simulation. Cundall (1982)
suggests the maximum out-of balance force at each time step as a
limit value to increase or decrease the computational density and there-
fore increasing or decreasing the time step.

Scaling techniques are used one way or another in most modern
commercial software packages such as ANSYS or LS-DYNA. The Liver-
more Software Technology Corporation, which develops LS-DYNA,
holds US-Patents about mass scaling techniques (Corporation LST,
2012).

In this paper, we present a systematic study of a rock-mechanical
model using and combining different scaling techniques to determine
how scaling affects the numerical solution. We investigate the effect of
mass and time scaling together with numerical resolution, physical
length scale, boundary conditions, internal forces and complex plasticity
models that include hardening and softening. We also investigate the
interaction between scaling techniques and the elastic damper, which
is used to eliminate elastic wave propagation in quasi-static deforma-
tion problems.

2. Theoretical and numerical model

Elastodynamics equations in their velocity–stress form describe the
elastic response of a rock skeleton in two dimensions

∂Vx

∂t
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� �
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where μ and λ are Lamé constants, ρc is the computational density, Vx

and Vy are x- and y-components of the velocity vector, σxx, σyy, σxy are
components of the stress tensor, and g is gravitational acceleration.

Plastic deformation of rocks is modeled using a Mohr–Coulomb
criterion

F ¼ τ− σm þ C �

tan φ0ð Þ
� �

� sin φ�ð Þ ð9Þ

where F is the yield function, C * is a mobilized cohesion, φ* is a mobi-
lized internal frictional angle, φ0 is the maximal internal frictional
angle, τ is the stress deviator, and σm is the mean stress (Vermeer and
de Borst, 1984).

Cohesion and internal friction angles can be mobilized in terms of a
cohesion weakening and frictional strengthening model with a depen-
dence on the effective plastic strain ϵp (Hajiabdolmajid et al., 2002).Mo-
bilized values for the friction angle, cohesion and dilatancy angle are
calculated following previous work (Vermeer and de Borst, 1984).

Plastic strain rates are given by

ϵ� pi j ¼ 0 for Fb0or F ¼ 0and F
�

b 0 ð10Þ

ϵ� pi j ¼ λp ∂q
∂σ i j

for F ¼ 0and F
� ¼ 0: ð11Þ

where λp is the plastic multiplier, Ḟ is time derivative of F and q is the
flow rule.

Effective plastic strain ϵp then follows as

ϵp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
ϵp

� T �M� ϵp
�

r
ð12Þ

where ϵp
�

is the plastic strain rate written as a 3-component vector. The
first and second components are the normal components, and the third
component is the shear direction. M is a diagonal weighting matrix
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