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Regularization is a routine approachused in earthquake slip distribution inversion to avoidnumerically abnormal
solutions. To date,most slip inversion studies have imposed uniform regularization on all the fault patches. How-
ever, adaptive regularization,where each retrieved parameter is regularized differently, has exhibited better per-
formances in other research fields such as image restoration. In this paper, we implement an investigation into
adaptive regularization for earthquake slip distribution inversion. It is found that adaptive regularization can
achieve a significantly smallermean square error (MSE) than uniform regularization, if it is set properly.We pro-
pose an adaptive regularization method based on weighted total least squares (WTLS). This approach assumes
that errors exist in both the regularization matrix and observation, and an iterative algorithm is used to solve
the solution. A weight coefficient is used to balance the regularization matrix residual and the observation resid-
ual. An experiment using four slip patterns was carried out to validate the proposed method. The results show
that the proposed regularization method can derive a smaller MSE than uniform regularization and resolution-
based adaptive regularization, and the improvement in MSE is more significant for slip patterns with low-
resolution slip patches. In this paper, we apply the proposed regularization method to study the slip distribution
of the 2011Mw 9.0 Tohoku earthquake. The retrieved slip distribution is less smooth andmore detailed than the
one retrieved with the uniform regularization method, and is closer to the existing slip model from joint inver-
sion of the geodetic and seismic data.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Earthquake slip inversion with geodetic constraints is an important
step in an earthquake study. Many earthquake research fields rely on
its results, including earthquake mechanics (Dmowska et al., 1996), re-
currence estimation (Thatcher, 1990), earthquake triggering (Lin and
Stein, 2004), and hazard assessment studies (Nishimura et al., 2000).
Modern geodesy, especially GPS and InSAR (Zhang et al., 2014), have
greatly increased the number of constraints on inversion (Wang et al.,
2012; Massonnet et al., 1994; Johnson et al., 2001), but using finite ob-
servations to invert the infinite fault slip on a continuous plane is always
an ill-posed problem.Normally, discretization is first applied to the fault
plane so that the infinite number of parameters can be reduced to a fi-
nite number of parameters. However, evenwhen the number of param-
eters is less than the number of observations, the inverse problem often
remains ill-posed because there are always poorly constrained slip
patches located at depth or in areas sparsely covered bymeasurements.

Therefore, regularization is necessary to avoid numerically abnormal
solutions of the ill-posed slip inversion problem. The widely applied reg-
ularization methods, such as truncated singular value decomposition
(TSVD) (Hansen, 1987) and the Tikhonov method (Tikhonov et al.,
1977), have also been applied to earthquake slip distribution in previous
works (Fornaro et al., 2012; Pritchard et al., 2002). Please note that in the
Bayesian inversion approaches (Jolivet et al., 2014; Ide et al., 1996;
Minson et al., 2013), the regularization normally corresponds to the
prior probability. The application of the regularization in slip distribution
inversion is mostly uniform-type regularization (Wright et al., 2004;
Jónsson et al., 2002), where all the slip patches are treated uniformly
with the same regularization. Little attention has been paid to adaptive
regularization (Lohman, 2004), even though it gives better performances
in many fields such as image restoration (Kang and Katsaggelos, 1995).
Alternatively, some research interest has been paid to varying the grid
size on the fault plane, where the fault is divided based on the resolution
matrix (Simons et al., 2002; Page et al., 2009; Barnhart and Lohman,
2010; Atzori and Antonioli, 2011).

This paper aims to explore the adaptive regularization of slip distri-
bution inversion. We start with an analysis of some widely accepted
regularization methods and an investigation into the relationship be-
tween discretization and regularization. We then examine the
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performance of the existing non-uniform fault discretization method
and some other kinds of adaptive regularization methods. Finally, we
propose a novel adaptive regularization method based on weighted
total least squares (WTLS). To validate the performance of the new
method, the results of a series of simulation experiments and a case
study of the 2011 Tohoku earthquake are presented.

2. Regularization of slip distribution inversion

2.1. The ill-posed slip distribution inversion problem

Fault slip can occur in every point of a fault plane, and should there-
fore be described by a continuous function m(x) with the coordinates
(x) as variables. To invert the fault slip from the geodetic constraints is
a standard continuous inverse problem, which can be described by a
Fredholm integral equation of the first kind (Menke, 2012):

di ¼
Z

V
Gi xð Þm xð Þdx; i ¼ 1;2…;Nð Þ ð1Þ

where di is the ith observed displacement,G is the elastic response of the
earth (Green's functions), m is the fault slip, and V is the volume of the
coordinates on the fault plane.

Because the solution to Eq. (1) is not unique, we need to first pa-
rameterize the continuous function m(x) by a finite number (M) of
coefficients:

m xð Þ≈
XM
j¼1

mj f j xð Þ ð2Þ

where fj(x) defines the a priori knowledge about the behavior of a
fault slip (Menke, 2012). It is normally assumed that the fault slip
is constant in a certain patch. Therefore, fj(x) is selected as a boxcar
function, which is unity for the coordinates located on the jth patch
and zero for those outside. The coefficient mj then represents the
slip on the jth patch. Other choices of fj(x), such as polynomial ap-
proximation, a truncated Fourier series, and splines (Fukahata and
Wright, 2008), can also be used to represent m(x).

In combining Eqs. (1) and (2), the continuous inverse problem turns
out to be a discrete inverse problem:

di ¼
XM
j¼1

Gijm j ð3Þ

where Gij ¼ ∫V j
GiðxÞ f jðxÞdx. Here, Vj denotes the volume of the coordi-

nates on the jth fault patch. The size of the grid is controlled by prior as-
sumption of the smoothness of the model (Menke, 2012). A smoother
slip distribution means that the fault slips can be approximately con-
stant in a larger grid.

There are three factors defining a well-posed discrete inverse
problem: 1) the existence of a solution; 2) the uniqueness of the
solution; and 3) the stability of the solution. With the development of
synthetic aperture radar (SAR) satellites and GPS networks, the number
ofmeasurements is often larger than the number of parameters (slips on
fault patches), and the solution can be uniquely determined using the or-
dinary least squares method. However, there will still be some poorly
constrained fault slips located at depth or in areas sparsely covered by
measurements. A small disturbance in the observations can lead to a
great disturbance for these slips, and so the uniquely determined solu-
tion is unstable. Therefore, the discrete inverse problem shown in
Eq. (3) is often ill-posed.

We can apply singular value decomposition (SVD) tomatrixG to an-
alyze how the solution instability comes out:

GN�M ¼ UN�NSN�MVM�M
T ð4Þ

whereU andV are orthogonalmatrices and S is a diagonalmatrix. Its el-
ements λi(i=1,2…,M) are defined as singular values. In using the col-
umn vector ui∈RN×1 and vi∈RM×1 to represent the matrices U and V,
the solution m from the ordinary least squares method is given by:

m ¼
XM
i¼1

uT
i d
λi

vi: ð5Þ

Assuming that the real observation ~d is perturbed from the real value
d with noise e, the solution ~m will take the form of:

~m ¼ mþ
XM
i¼1

uT
i e
λi

vi: ð6Þ

For an ill-posed inverse problem, λi decreases quickly from i = 1 to
i=M. Fig. 1 shows an example of the decreasingλi from an ill-posed in-
verse problem,which uses 2939 InSARobservations to solve the slips on
120 fault patches.We can see that λi is almost zero when i is larger than

40. This indicates that the noise part u
T
i e
λi

vi in the solution ~m is very high.

The purpose of regularization is to find a filter factor τi to suppress
the instability caused by the small λi, and not to affect the large λi

significantly at the same time. The solution with a filter factor τi is
given by:

~m ¼
XM
i¼1

τi
uT
i d
λi

vi þ
XM
i¼1

τi
uT
i e
λi

vi: ð7Þ

The difference between regularization methods lies in the choice of
filter factor τi.

2.2. Regularization methods

Before introducing the regularization methods, we firstly define
the metric to evaluate the regularized solution. After regularization,
the solution ~m becomes a biased solution, which means the expecta-
tion of ~m is not equal to the true solutionm. Three terms are involved
in describing the accuracy of ~m, including bias (B), solution variance
(D) and mean square error (MSE). Bias (B) denotes the discrepancy
between the expectation of ~m and true value m. Solution variance

Fig. 1. Singular values from an ill-posed inverse problem.
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