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Shape fabrics of elliptical objects in rocks are usually assumed to develop by passive behavior of inclusions with
respect to the surrounding material leading to shape-based strain analysis methods belonging to the Rf/ϕ family.
A probability density function is derived for the orientational characteristics of populations of rigid ellipses
deforming in a pure shear 2D deformation with both no-slip and slip boundary conditions. Usingmaximum like-
lihood a numerical method is developed for estimating finite strain in natural populations deforming for both
mechanisms. Application to a natural example indicates the importance of the slip mechanism in explaining
clast shape fabrics in deformed sediments.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The characterization of crustal deformation in geological studies is
typically achieved using strain analysis techniques that use populations
of ubiquitous objects found in deformed rocks (e.g., sedimentary clasts)
assumed to act as idealized ellipsoidal markers for the purpose of quan-
tifying strain (Ramsay, 1967; Shimamoto and Ikeda, 1976; Robin, 1977).
Nearly all existing methodologies make the critical assumption that
these ellipsoidal markers acted passively during deformation, i.e., the
marker and surrounding rock matrix respond to deformation identical-
ly. If the assumption of passive behavior is to be strictly adhered to and
respected, the number of valid natural strain markers available for
structural studies is severely limited due to the variability in marker/
matrix competence contrasts in real rocks. Such heterogeneity is partic-
ularly evident when studying deformation in sedimentary rocks where
competence contrasts between clasts and matrix can be quite signifi-
cant. This potential contrast in viscosity between clasts and matrix, es-
pecially in conglomerates, has been long recognized (Ramsay, 1967;
Gay, 1968a,b; Meere et al., 2008). A number of studies have provided
a theoretical treatment of the deformation of objects within a matrix
with variable contrast in viscosity (Gay, 1968a,b; Ghosh and Sengupta,

1973; Bilby et al., 1975; Lisle, 1983; Mulchrone and Walsh, 2006;
Treagus and Treagus, 2001, 2002). An extreme case of such rheological
contrast is one where the clasts behave as rigid objects. An increasing
body of analog and numerical modeling studies exist (Ildefonse et al.,
1992a,b; Ildefonse and Mancktelow, 1993; Arbaret et al., 1996; Jezek
et al., 1996, 1999; Piazolo et al., 2002; Mulchrone, 2007a) that charac-
terize deformation by rigid body rotation of clasts in a weak matrix
(Jeffery, 1922). This behavior is increasingly recognized in deformed
rocks and sedimentwhere thematrix supporting rigid clasts ismechan-
ically weak, e.g., deformation in glacial tills and fault gouge
(Dowdeswell and Sharp, 1986; Hart, 1994; Clark, 1997; Hooyer and
Iverson, 2000; Carr and Rose, 2003; Evans et al., 2006; Thomason and
Iverson, 2006; Iverson et al., 2007, 2008; Benn and Evans, 2010).
Hooyer and Iverson (2000) in an experimental study on clast fabrics
in glacial tills were the first to recognize the tendency of clasts during
simple shear to rotate into the shear plane and remain there, contrary
to what would be expected from the rigid model (Jeffery, 1922)
where clasts rotate through the shear plane with ongoing deformation.
They attributed this behavior to the likelihood of mechanical ‘slip’
between clast and matrix during deformation. Meere et al. (2008)
recognized a significant component of ‘non passive’ rigid clast be-
havior in tectonically deformed sandstones and conglomerates
from SW Ireland and western Montana. This study will further ex-
plore the potential contribution of clast /matrix slip has to the devel-
opment of fabrics in rocks where rigid body rotation is the dominant
deformation mechanism.
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2. Rigid object rotation under pure shear with stick and slip
boundary conditions

Equations to describe the motion of an isolated rigid elliptical inclu-
sion immersed in a very viscous linear fluid with no-slip boundary con-
ditions are well known (Jeffery, 1922). More recently these equations
have been extended in 2D to cover the case of a deformable inclusion
with no-slip (Mulchrone and Walsh, 2006) and a rigid inclusion with
a slip boundary condition (Mulchrone, 2007b). Here, the case of fabric
evolution during a pure shear deformation is considered and relevant
equations are briefly presented.

The velocity gradient tensor (L) corresponding to incompressible
pure shear is:

L ¼ L11 0
0 −L11

� �
ð1Þ

where L11 N 0 results in extension along the x-direction and compres-
sion along the y-direction (see Fig. 1). Ordinary differential equations
describing the motion of a linear viscous deformable inclusion in 2D in
this deformation regime (Mulchrone and Walsh, 2006) with no-slip at
the boundary are given by:

dϕ
dt

¼ −
L11 Rþ 1ð Þ 1þ 2R μ r−1ð Þ þ R2

� �
sin 2ϕ

R−1ð Þ 1þ 2μrRþ R2
� � ð2Þ

dR
dt

¼ 2L11μ rR 1þ Rð Þ2 cos 2ϕ
μr 1þ R2
� �

þ 2R
ð3Þ

where t is time, μr is the ratio of the external to the internal viscosity, R is
a axial ratio of the inclusion and ϕ is the orientation of the long axis
such that the positive x-direction is the zero ϕ − direction. Choosing
the kinematic framework such that maximum extension is along the
x-directionmeans that it parallels the zeroϕ− direction. Given that fab-
rics tend to parallel the direction of maximum extension, measuring
natural inclusions relative to a cleavage is convenient and simplifies
the mathematics.

Setting μ r = 1 Eqs. (2) and (3) gives the motion of a passive
inclusion:

dϕ
dt

¼ −
L11 1þ R2

� �
sin 2ϕ

R2−1
ð4Þ

dR
dt

¼ 2L11R cos 2ϕ: ð5Þ

Taking initial conditions R (0) = 1 and ϕ(0) = 0 and solving
Eqs. (4) and (5), the evolution of the strain ellipse is found to be:

Rs ¼ e2L11t ð6Þ

which allows time to be parameterized in terms of the axial ratio of the
finite strain ellipse (Rs):

t ¼ ln Rsð Þ
2L11

: ð7Þ

Rs is a more natural parameter to use in discussing fabric evolution.
Setting μ r=0 in Eqs. (2) and (3) themotion of a rigid inclusionwith

no-slip (Jeffery, 1922) is governed by:

dϕ
dt

¼ −
L11 R2−1

� �
sin 2ϕ

R2 þ 1
ð8Þ

and because the inclusion is rigid dR
dt ¼ 0. This is referred to as the case of

rigid no-slip. The corresponding motion of a rigid inclusion with a slip
boundary condition is given by (Mulchrone, 2007a,b):

dϕ
dt

¼ −
L11 Rþ 1ð Þ sin 2ϕ

R−1
ð9Þ

once again dR
dt ¼ 0. This is referred to as the case of rigid slip. Eqs. (8) and

(9) are the key equations used in the analysis below and the cases are
termed (i) rigid no-slip and (ii) rigid slip respectively.

3. Fabrics for rigid object populations

3.1. Introduction

In this section two probability density functions (pdfs) to describe
the fabrics developed by populations of rigid elliptical objects under a
pure shear deformation are derived for the cases of (i) rigid no-slip
and (ii) rigid slip. Preferred orientations of populations of rigid objects
with no-slip (Fernandez et al, 1983; Fernandez, 1987; Jezek et al.,
1996; Masuda et al., 1995; Marques and Coelho, 2003) have been
studied in the context of a general shear. Here, attention is restricted
to the pure shear case along with rigid behavior with slip (Mulchrone,
2007b) and the question of how to estimate associated finite strain.
This involves derviation of probability density functions.

A pdf is a function which gives the relative probability that an ellip-
tical object is oriented with its long axis along a particular direction. For

a

b

Fig. 1. (a) Definition diagram for elliptical inclusion with long axis of half length a, short
axis of half length b and axial ratio R ¼ a

b. Long axis makes an angle ϕ with the positive
x − direction. Material inside the ellipse has viscosity μi and material outside the ellipse
has viscosity μe. (b) Flow field corresponding to velocity gradient tensor (L) given in
Eq. (1). If L11 N 0 thenmaximum extension is along the x− direction andmaximum com-
pression is along the y − direction.
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