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We present a new numerical model to calculate the surface deflection of a two-dimensional, yet variable
thickness, thin elastic plate. The model is based on a multi-grid, finite difference solution of the
fourth-order differential equation that incorporates the terms arising from the non-uniform thickness as-
sumption. The model has been developed to calculate the flexural response of the continental lithosphere
subjected to an arbitrary, instantaneous stretching. The flexural model is coupled to (a) a finite element,
three dimensional thermal model incorporating the conduction, advection and production terms that allows
the computation of the thermal subsidence resulting from the stretching-induced perturbation of the iso-
therms, assuming that the effective elastic thickness is controlled by the depth to a given isotherm; and
(b) a finite difference surface process model that assumes that transport is linearly proportional to slope lead-
ing to a second-order, diffusion-type partial differential equation. The model also incorporates the effect of
sediment compaction. We present a series of simple benchmarks that demonstrate the accuracy of the
model. We also present results of simple 2D and 3D stretching experiments highlighting the importance of
3D flexural effects and the assumed variable elastic thickness on the development of a passive margin and
its thermal evolution. Finally, we perform a numerical experiment based on a stretching geometry derived
from the present-day geometry of the Western AfricaTransform Margin to predict sediment accumulation
patterns and a stratigraphic architecture which we can compare to observations.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Flexural effects during extension and stretching of the continental
lithosphere lead to rift flank uplift and overdeepening of the adjacent
rift basin areas (Beaumont, 1982; Braun and Beaumont, 1989; Vening
Meinesz, 1950). With a few exceptions (Garcia-Castellanos et al.,
2002; Sacek et al., 2012; vanWees and Cloetingh, 1996), most quantita-
tive studies of these flexural effects have been limited to two-
dimensional analyses (Braun and Beaumont, 1989; Chéry et al., 1992;
Weissel and Karner, 1989). In particular, flexural effects along
non-cylindrical passive margin segments, such as commonly observed
where large fracture zones intersect the continent, have not been quan-
titatively assessed. This is true too for the three-dimensional patterns of

the ensuing thermal subsidence. Although sophisticated models have
been developed to simulate the complex sedimentary architecture as-
sociated with tectonic subsidence and/or sea level change (Bitzer and
Pflug, 1989; Grandjeon and Joseph, 1999; Li et al., 2004; Salles and
Duclaux, 2011), none has so far been properly linked to a three-
dimensional flexural and thermal model of the underlying lithosphere
to study the complex behavior of this coupled system.

Here, we present a recently developed numerical model, which we
called Flex3D, that combines a state-of-the-art solver for the thin elastic
plate flexure equation with a surface process model and a three-
dimensional model of the thermal evolution of the underlying litho-
sphere.Wedemonstrate its usefulness in quantifying the uplift and sub-
sidence patterns associated with rifting and their evolution through
time following a rifting event that leads to the formation of a passive
continental margin. We highlight the importance of three dimensional
effects, focusing on the complex geometry of passive margins in the vi-
cinity of an important ‘jog’ connecting two linear segments and on the
effects of strongly varying elastic thickness across the continent–
ocean transition following continental rifting. We demonstrate the en-
hancement of flexural effects where the margin is not linear. Finally,
we showhowour predictions can be directly compared to the geometry
of a passive margin, off the coast of Guinea.
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2. The flexural model

2.1. Basic equation

The deflection, w, of a thin elastic plate subjected to a vertical load
q, an in-plane stress field [σxx,σyy,σxy] and floating on an inviscid fluid
of density ρa is governed by the following equation (vanWees and
Cloetingh, 1994):
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where D is the flexural rigidity, given by:

D ¼ Eh3

12 1−ν2
� � : ð2Þ

Δρ=ρa−ρw (where ρw is the density of water assumed to fill the
space created by the deflection of the plate), g is the acceleration due
to gravity, h is effective elastic thickness (EET), E is Young's modulus
and ν is Poisson's ratio. ν is assumed to have a uniform value, but E
and h are allowed to vary spatially.

Assuming that the plate thickness and elastic rigidity are uniform,
Eq. (1) would reduce to the well-known biharmonic equation
(Bodine et al., 1981):
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for which there exist analytical solutions corresponding to a variety of
boundary conditions (see Watts, 2001, for example). Here we will as-
sume that D and h vary in an arbitrary manner in space and time. Con-
sequently Eq. (1) needs to be solved numerically.

The domain of integration is a rectangular area of dimensions Lx by
Ly. Boundary conditions are zero deflection (w=0) and zero bending
(∂ 2w/∂n2=0, where n is the direction normal to the boundary), on
all four domain boundaries(x=0, x=Lx, y=0, y=Ly).

2.2. The load

Our main purpose is to solve Eq. (1) to estimate the deflection of
the lithosphere following a rifting event during which the crust of
original thickness hc

0 is thinned by a factor δ=hc
0/hc and the mantle

part of the lithosphere of original thickness hm0 is thinned by a factor
β=hm

0 /hm. Following Braun and Beaumont (1989) and Weissel and
Karner (1989), the strength profile of the lithosphere can be approx-
imated, to first order, by a strong fiber located at a depth zn, also
called the necking depth, i.e. the depth along which the lithosphere
would neck if it was not subjected to isostasy. Under such an assump-
tion, thinning of the crust induces a vertical deflection of amplitude

wδ ¼ − 1−1=δð Þzn ð4Þ

which generates a vertical, isostatically-driven load, qδ, of amplitude:

qδ ¼ 1−1=δð ÞznΔρg− 1−1=δð Þhc ρm−ρcð Þg: ð5Þ

Thinning of the lithosphere induces also a thermal load, qt, of
amplitude:

qt ¼ ∫hcþhm
0 ρ zð ÞgαvΔT zð Þdz ð6Þ

where αv is the coefficient of thermal expansion and ΔT(z) the differ-
ence in temperature at depth z before and after the extension. Finally,
the loading/unloading associated with sedimentation and erosion pro-
cesses can be approximated by an additional load, qs, of amplitude:

qs ¼ − ρs−ρwð Þgzs ð7Þ

where zs is the accumulated (fully compacted) sediment thickness
(zs>0) that replaces the water assumed to fill the gap created by the de-
flectionof the surface (Eq. (1)), or the thickness of erodedmaterial (zsb0).

2.3. Finite difference discretization

Eq. (1) is solved on a two-dimensional rectangular grid with reg-
ular spacings Δx and Δy, using the following centered finite difference
operators at a point of integer coordinates (i,j):
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The partial differential equation (Eq. (1)) reduces to a set of
coupled linear equations, one for each point (i,j) of the regular grid
connecting (i,j) to its 12 closest neighbors which can be expressed
symbolically in the following matrix form:

AW ¼ Q ð9Þ

where A is a positive definite matrix,W is the vector of unknown dis-
placements of length equal to the total number of points on the reg-
ular grid and Q a load vector of the same length.

2.4. Multigrid solver

In order to solve this large system of algebraic equations, a
multi-grid, iterative method (Hackbusch, 1985) is used. This method
uses a set of nested grids of resolution (2l+1)×(2l+1) for l= lmin, lmax

and requires three basic ingredients: a smoothing operator that im-
proves the solution at any given level, l; a prolongation operator that in-
terpolates the residual from a coarse grid (level l) to a fine grid (level
l+1); and a restriction operator that transfers the information (the
residual) from fine to coarse grids. Here we use a Gauss–Siedel iter-
ative scheme for the smoothing operator, a bilinear interpolation
for the prolongation operator and its adjunct (transposed) for the re-
striction operator. We also make use of W-cycles to accelerate the
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