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Analyzing, visualizing and communicating uncertainties are important issues as geological models can never
be fully determined. To date, there exists no general approach to quantify uncertainties in geological
modeling. We propose here to use information entropy as an objective measure to compare and evaluate
model and observational results. Information entropy was introduced in the 50s and defines a scalar value at
every location in the model for predictability. We show that this method not only provides a quantitative
insight into model uncertainties but, due to the underlying concept of information entropy, can be related to
questions of data integration (i.e. how is the model quality interconnected with the used input data) and
model evolution (i.e. does new data – or a changed geological hypothesis – optimize the model). In other
words information entropy is a powerful measure to be used for data assimilation and inversion.
As a first test of feasibility, we present the application of the new method to the visualization of uncertainties in
geological models, here understood as structural representations of the subsurface. Applying the concept of
information entropy on a suite of simulated models, we can clearly identify (a) uncertain regions within the
model, even for complex geometries; (b) the overall uncertainty of a geological unit, which is, for example, of
great relevance in any type of resource estimation; (c) a mean entropy for the whole model, important to track
model changeswith oneoverallmeasure. These results cannot easily beobtainedwith existing standardmethods.
The results suggest that information entropy is a powerful method to visualize uncertainties in geological
models, and to classify the indefiniteness of single units and the mean entropy of a model quantitatively. Due to
the relationship of this measure to the missing information, we expect the method to have a great potential in
many types of geoscientific data assimilation problems — beyond pure visualization.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Visualizing and analyzing uncertainties in 3-D structural geological
models are widely recognized as important issues (e.g. Bond et al.,
2007; Caumon et al., 2009; Jessell et al., 2010; Jones et al., 2004). We
propose here an information entropy method as a quantitative
measure for the quality of a geological model and its geological sub-
units, based on the Shannon Entropy model (Shannon, 1948).
Goodchild et al. (1994) already used this method to visualize
uncertainties in map applications in a 2D context for fuzzy sets
resulting from poorly constrained data. We extend it here into the
third dimension and combine it with an uncertainty simulation
approach that is applicable to complex 3-D geological settings
(Wellmann et al., 2010). In the context presented here, we propose
that information entropy is a sound method to visualize uncertainties
in any complex 3-D setting. But due to its underlying concept of

information, we expect that it can provide significant insights into the
used and missing information to constrain a model.

In the following, we will briefly review the concept of information
entropy and will show how this measure can be used to evaluate
uncertainty at one position within a model domain. We will then apply
this measure to visualize a 3-D uncertainty field, calculated with a
simulationmethod for geological uncertainty and discuss the feasibility
of this method and the possible extension beyond visualization.

2. Materials and methods

2.1. Visualizing uncertainty

A variety of different methods exists to evaluate the quality of a
geological model. These range from simple uncertainty measures,
determined from data uncertainties, over geostatistical evaluations
(e.g. Chilès and Delfiner, 1999) to model simulations (Suzuki et al.,
2008). A challenge is, in many cases, the communication of the model
quality. Several authors have developed methods to visualize un-
certainties in a geographic reference frame (e.g. MacEachren et al.,
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2005) or in a stratigraphic grid (Viard et al., 2007). The problem with
most of these visualizations is that they are restricted to specific
geological settings (i.e. most cannot handle complex three-dimensional
settings like domes or overturned folds), that many estimations are
subjective and ‘ad-hoc’ approaches (Jones et al., 2004) or only suitable to
represent specific types of uncertainties (see Bond et al., 2007, and
references therein for a discussion of several approaches).

Our aim of visualizing the uncertainty in a structural geological
model is to find a measure that predicts the accuracy of the model at
every location in the model space, for any type of complex geological
model. To achieve this, we subdivide the whole model space into a
regular raster with equal cell sizes (also referred to as voxels). We can
then evaluate the accuracy of every voxel, everywhere within a unit—
rather than only the accuracy of a polygon/surface boundary (see
Leung et al., 1993 for a discussion of raster vs. polygon estimation).

Within each of the raster cells, we want to find a measure of
uncertainty fulfilling the following criteria:

1. The value should be 0 when no uncertainty exists, i.e. there is only
one possible outcome (i.e. geological unit) iwith probability pi=1;

2. The value should be maximal when all n possible outcomes are
equally likely: pi = 1

n∀ i∈n. Or, formulated for the case of a
geological model: there is absolutely no reason to expect a specific
geological unit at this location;

3. If more outcomes are equally likely, the measure should have a
higher value (“monotonicity”);

4. The measure should fulfill the criteria of expansibility, i.e. the value
should not change when an additional outcome with probability
0 is added;

5. The measure should be independent of the order of results
(“symmetry”).

The information entropy, first defined by Shannon (1948), fulfills
all of these properties (see Klir et al., 1988; Yager, 1995, for further
details). We apply it here as a method to visualize uncertainties and
discuss some potential applications beyond pure visualization.

2.2. Information entropy

The concept of information entropy was first defined by Shannon
(1948) in a study performed to identify the amount of information
required to transmit English text. The underlying idea was that, given
the probabilities of letters occurring in the English alphabet, it is
possible to derive a measure describing the missing information to
determine the full text of a partially transmitted message, where
information is understood as the information required to identify the
message, not the information of the message itself. Based on several
theoretical considerations, Shannon derived the following equation to
classify a measure of the missing information, often referred to as
information entropy:

H = −∑
N

i
pi log pi: ð1Þ

The information entropy H is defined as the sum of all products of
probabilities p for each possible outcome i of N total possible
outcomes with its logarithm. The minimum value is 0, because
log 1=0 and limx→0(x log x)=0 (possible to prove with L'Hopital's
theorem, see Ben-Naim, 2008). The logarithm can be taken with any
base, depending on the applied unit of information. We will use the
logarithm with base “2” in the following examples and discussion, as
it relates to the information unit of one bit (see below).

2.2.1. Information entropy of a 1 bit system with two possible outcomes
As an example, we will briefly examine the information entropy of

a very simple system with only two exclusive outcomes A and B, with
P(A) and P(B)=P(A)′. We can, for example, consider the example of a

coin flip where the outcome is either head or number (1-bit system
with two possible outcomes). The information entropy quantifies the
amount of missing information to classify this system.

If the coin is fair, i.e. outcome of head and tail is equal, then the
entropy is highest. Whereas, when the coin is unfair, the entropy is
lower, because one outcome is more probable than the other. In the
extreme case (an extremely unfair coin) where the outcome is always
the same, the information entropy is 0, because the outcome is
known. Using Eq. (1), this simple example is presented in Fig. 1.

2.2.2. Information entropy in an evolutionary spatial context
In a spatial or modeling context, we can interpret the information

entropy of a model subregion (e.g. a cell) as the amount of missing
information with respect to the discrete properties of the cell. In the
following, we consider the membership to a specific geological unit as
this property. This is possible, as we consider geological units as
exclusive events, i.e. a cell belongs either to the geological unit 1, or
unit 2, … M.

For each discrete subregion, we can describe the information
entropy as

H x; tð Þ = − ∑
M

m=1
pm x; tð Þlog pm x; tð Þ ð2Þ

where x denotes the location of the subregion and M the number of
possible (exclusive) members the subregion can contain. t could be
physical time or any other parameter describing the evolution of a
model.

This measure can then be used to visualize the uncertainty of cells
in a straight-forward way. Let us, for example, consider a map with
discrete subdivisions into a regular grid (Fig. 2a) where each cell can
contain one of three possible members and where we can derive
probabilities for each possible outcome in each cell (Fig. 2b). Applying
Eq. (2) for each cell with position x, we obtain a map of information
entropies (Fig. 2c).

We can see that the entropy measure fulfills the criteria described
above (Section 2.1), specifically:

• The entropy is 0 for cells where one member has the probability 1
and all others are 0 (e.g. cell A).
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Fig. 1. Shannon entropy for 1 bit system (two possible outcomes) as a function of the
probability of the first outcome. When the probability of one outcome is close to 0 or 1,
the entropy is low; whereas when the probability of both outcomes is 0.5, the entropy is
maximal and equal to 1 if the information unit is 1 bit and the logarithm to base 2 is
taken.
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