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a b s t r a c t

This paper introduces three new operators and presents some of their properties. It defines
a new class of variational problems (called Generalized Variational Problems, or GVPs) in
terms of these operators and derives Euler–Lagrange equations for this class of problems.
It is demonstrated that the left and the right fractional Riemann–Liouville integrals, and
the left and the right fractional Riemann–Liouville, Caputo, Riesz–Riemann–Liouville and
Riesz–Caputo derivatives are special cases of these operators, and they are obtained
by considering a special kernel. Further, the Euler–Lagrange equations developed for
functional defined in terms of the left and the right fractional Riemann–Liouville,
Caputo, Riesz–Riemann–Liouville and Riesz–Caputo derivatives are special cases of the
Euler–Lagrange equations developed here. Examples are considered to demonstrate the
applications of the new operators and the new Euler–Lagrange equations. The concepts
of adjoint differential operators and adjoint differential equations defined in terms of
the new operators are introduced. A new class of generalized Lagrangian, Hamiltonian,
and action principles are presented. In special cases, these formulations lead to fractional
adjoint differential operators and adjoint differential equations, and fractional Lagrangian,
Hamiltonian, and action principle. Thus, the new operators introduce a generalized
approach to many problems in classical mechanics in general and variational calculus in
particular. Possible extensions of the subject and the concepts discussed here are also
outlined.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Over centuries philosophers and scientists have attempted to reduce the laws and the principles of nature to a minimum
[1]. Among all laws and principles of nature, the principle that could be elevated to the universal law/principle level is the
minimum action principle which in an extended sense can be stated as follows: The nature always tries to minimize some
action variables or functionals. The subject that deals with these functionals is known as the Calculus of variations. Several
excellent books have been written on this subject, and the theories and formulations developed in these books have been
applied to many areas including classical and quantum mechanics, and electro- and hydrodynamics (see, e.g. [2,1]). 1
In spite of its great success, the classical variational calculus has one major short coming; it deals with functionals

containing derivatives of integer orders only. Recent developments in the fields of science, engineering, economics,
bioengineering and appliedmathematics have demonstrated thatmany phenomena in nature aremodelledmore accurately
using fractional derivatives (see, e.g. [3,4]). To overcome this situation, several investigators have developed a new Fractional
Variational Calculus (see, e.g. [5,6]), and it has been used to develop FractionalMechanics (see, e.g. [7,8]) and Fractional Optimal
Control [9] fields. A brief survey of research in this area could be found in [6]. For brevity, we omit this survey here.
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1 The paper does not provide a comprehensive review on any topic. In view of brevity, herewe give only some representative references. Other references
could be found in the references cited here.
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The fractional variational calculus proposed above overcomes the shortcoming of the classical variational calculus
only partially. From close examination of definitions of many of the fractional derivatives, it becomes clear that these
derivatives are nothing but a combination of fractional integral and integer order differential operators applied on functions
whose fractional derivative is desired. Here, the fractional integrals of a function are defined as convolution of the kernel
kα(t, τ ) = (t−τ)α−1/0(α) (or kα(τ , t)) with the function. However, the fractional power kernel need not be the only kernel
to describe the phenomena of the nature. For example, some researchers have used stretched exponentials to fit Nuclear
Magnetic Resonance (NMR) and Magnetic Resonance Imaging data and model human brains (see [10]). It soon becomes
obvious that this kernel can be replaced with other kernels, and the entire theories of classical and fractional variational
calculus can be redeveloped. In such a case, the theories of classical and fractional variational calculus and other formulations
resulting from them would be special cases of this more general variational calculus.
In this paper, we initiate this general variational calculus.We define three new operators which in special cases reduce to

the left and the right fractional Riemann–Liouville integral, and the left and the right fractional Riemann–Liouville, Caputo,
Riesz–Riemann–Liouville, Riesz–Caputo differential operators. By proper choice of limits, it can be shown that these new
operators can also represent other fractional operators such asWeyl fractional operators. We define some simple functional
in terms of these new operators, and develop necessary conditions for extremum of these functionals. We show that in
special cases these conditions reduce to the necessary conditions for fractional variational problems discussed elsewhere
(see [6] and the references cited therein). We consider examples where the kernels considered are different from that
given in the preceding paragraph. We demonstrate that the necessary conditions for these examples developed using the
formulations presentedhere agreewith those obtainedusing someother techniques.Wealso develop the concepts of adjoint
differential operators and adjoint differential equations, and generalized Lagrangian, Hamiltonian, and action principle.
Finally, we briefly discuss possible extensions of this field.
We begin with the definitions and some basic properties of these operators.

2. New operators and their properties

Let us first consider operator KαP of order α, which we define as

Kα
〈a,t,b,p,q〉f (t) = p

∫ t

a
kα(t, τ )f (τ )dτ + q

∫ b

t
kα(τ , t)f (τ )dτ

= KαP f (t), α > 0, (1)

where a < t < b, P = 〈a, t, b, p, q〉 is a parameter set (called p-set), kα(t, τ ) is a kernel which may depend on a parameter
α, and the parameters p and q are two real numbers. The integration limits a and b could extend to−∞ and∞, respectively.
Due to a lack of a terminology, we call KαP as K-op (or operator K) of order α and p-set (or parameter set) P , and K

α
P f (t) as

K-opn (or operation K) of f (t) (or function f (t)) of order α and p-set P . This operator is a linear operator, i.e. if f1(t) and f2(t)
are two functions, then

KαP (f1(t)+ f2(t)) = K
α
P f1(t)+ K

α
P f2(t), (2)

and it satisfies the following properties:

Theorem 1. Operator KαP satisfies the following formula,

KαP f (t) = pK
α
P1 f (t)+ qK

α
P2 f (t) (3)

where P = 〈a, t, b, p, q〉, P1 = 〈a, t, b, 1, 0〉 and P2 = 〈a, t, b, 0, 1〉.

Proof. Eq. (3) follows from the definition of KαP . �

Theorem 2. Operator KαP satisfies the following integration by parts formula,∫ b

a
g(t)KαP f (t)dt =

∫ b

a
f (t)KαP∗g(t)dt, (4)

where P = 〈a, t, b, p, q〉 and P∗ = 〈a, t, b, q, p〉.

Proof. The above identity follows by using the definition of KαP and changing the order of the integrations. �

Define the ‘‘reflection operator ’’ Q such that (Qf )(t) = f (a+ b− t).

Theorem 3. If kα(t, τ ) = kα(t − τ), the operators KαP and Q satisfy the following identity,

QKαP f (t) = K
α
P∗Qf (t) (5)

where P = 〈a, t, b, p, q〉 and P∗ = 〈a, t, b, q, p〉.



Download	English	Version:

https://daneshyari.com/en/article/469296

Download	Persian	Version:

https://daneshyari.com/article/469296

Daneshyari.com

https://daneshyari.com/en/article/469296
https://daneshyari.com/article/469296
https://daneshyari.com/

