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The geocenter motion describes the surface net-displacement of the entire solid Earth with respect to the
center-of-mass of the entire Earth including surface masses. Therefore, it resembles an integrative quantity
of surface displacement and mass redistribution inside the Earth as well as at its surface. Seasonal variations
of this quantity are understood to originate mainly from mass redistribution in the water cycle. In contrast, a
secular trend of the geocenter motion is possible to result also from the dynamics of the Earth's interior. One
mechanism inducing a secular geocenter motion is the glacial-isostatic adjustment, describing the
deformation and mass redistribution in the Earth's interior due to glaciations during the Pleistocene.
Focusing on this contribution, we compute the geocenter motion from the displacement and gravity-
potential fields calculated for a spherical, self-gravitating, incompressible and viscoelastic Earth model
loaded by the last Pleistocene glacial cycle. We discuss the fluid-core approximation usually adopted and
assess the influence of a list of modelling parameters which are the upper- and lower-mantle viscosity,
lithosphere thickness, and glaciation history. We find a rather robust geocenter motion with respect to
parameter variations, which is directed towards Northeast Canada and shows velocities that vary between
0.1 and 1 mm/yr depending on the adopted Earth-model and glaciation-history parameterizations.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Due to increasing accuracy in determining the Earth-orientation
parameters, the geocenter (GC) motion becomes more important. We
define it here according to Blewitt (2003) as the motion of the center-
of-figure (CF), i.e. the ‘frame defined geometrically as though the
Earth's surface were covered by a uniform, infinitely dense array of
points’, against the center-of-mass (CM) of the entire Earth system
including surface masses. Whereas the variations of surface masses in
ocean, atmosphere, cryosphere and continental hydrology contribute
the largest seasonal signal (e.g. Chen et al., 1999) long term variations
can also be explained by mass redistributions in the Earth's interior.

The GC motion can be determined from a combination of
observations like DORIS and LAGEOS (e.g. Bouillé et al., 2000), using
GRACE tracking data (Kang et al., 2009), VLBI or GPS. A problem of this
combination of ground-based and satellite data is the unequal
distribution of observation points at the Earth's surface. As discussed
in Blewitt (2003), a fiducial-free network displacement of GPS-
stations should be possible to use for geodynamic constraints, if all
non-gravitational forces contaminating the motion of the satellites
would be known (Heflin et al., 1992). The seasonal signal is
determined rather accurately (Blewitt et al., 2001; Dong et al., 2003;

Lavallée et al., 2006) and its origin from the redistribution of surface
masses is understood (Chen et al., 1999; Wu et al., 2006). The secular
trend of the GC motion can also result frommass redistribution in the
Earth's interior. As already suggested by Greff-Lefftz (2000), one
candidate is the glacial-isostatic adjustment (GIA) which describes
the adjustment of the Earth's interior after the last glacial cycle which
terminated 8000 yr before present.

Recently, Argus (2007) assessed the contribution of GIA to this
motion to be not larger than 0.1 mm/yr. He considered themain effect
of GIA on the GC motion to be the mass change due to the uplift in
Laurentide, determined this as a motion of the solid-Earth system
(CE) against the CM according to Blewitt et al. (2001) and got a
velocity of 0.034 mm/yr for the Earth-model/glaciation-history
combination VM2/ICE-5G (Peltier, 2004). Determining the GIA-
induced GC motion from the global surface-displacement field,
Greff-Lefftz (2000) studied the dependence of GC motion on the
viscosity contrast between upper and lower mantle and predicted
values of up to 0.4 mm/yr, where she considered the glaciation history
ICE3G (Tushingham and Peltier, 1991). Furthermore, applying a
formal inversion, Wu et al. (Submitted for publication) assessed a
value of 0.7 mm/yr for the contribution of GIA.

Based on the numerical technique of Martinec (2000), we revisit
the calculation of the GC motion for a viscoelastic non-rotating planet
and present the uniqueness conditions for determining the GIA-
induced deformation.

Furthermore, we discuss the influence of the fluid-core approxima-
tion, oftenapplied inmodellingofGIA. This approximation considers the
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influence of the fluid core as a boundary condition at the core–mantle
boundary assuming the core as a self-gravitating fluid persisting to
remain in a hydrostatic state (Crossley and Gubbins, 1975). The
presentedmodel is applied to Earth-model/glaciation-history combina-
tions, the influence of lower- and upper-mantle viscosity on GCmotion
is discussed and the influence of the chosen glaciation history is shown.

The study is based on the solution strategy of solving the field
equations with a spectral finite element method (SFEM) suggested by
Martinec (2000). There, the radial dependence of the fields is solved by
finite elements whereas the lateral dependence is set up in spherical
harmonics. The time dependence of the viscousflow is solved directly in
the timedomainomitting theusually considerednormalmode theory in
the Laplace domain (Wu and Peltier, 1982). Due to the chosen setup of
the system of equations and in addition to boundary conditions which
resemble the loading process, six uniqueness conditions have to be
specified. In order to prohibit a net translation, the usual choice is to
consider the CMor, alternatively, to consider the CF to be invariant with
respect to the loading process. A second set of uniqueness conditions is
related to the rotation of thebody.Herewe consider the ITRF convention
of no surface net rotation (e.g. Kreemer et al., 2006).

In this study, we aim at emphasizing a significant influence of
lower-mantle viscosity on a GC motion. The Earth-model/glaciation-
history combination VM2/ICE-5G of Peltier (2004) results in a GC
motion of about 0.1 mm/yr (Argus, 2007), which can partly be ex-
plained by a small lower-mantle viscosity considered in VM2. Pre-
dictions of the

▪

J2-term by GIA and comparison to true polar wander
suggest a significant viscosity contrast between upper and lower
mantle of at least one order of magnitude (Vermeersen et al., 1998).
Furthermore, Greff-Lefftz (2000) already showed that considering the
glaciation history ICE3G (Tushingham and Peltier, 1991) and a
viscosity contrast of 10 between lower and upper mantle amplifies
the GC motion to 0.5 mm/yr.

2. Theoretical background

Since the viscoelastic response of the Earth induced by glacial
loading has a global feature, it is convenient to treat it in spherical
coordinates and parameterize field variables in terms of surface
spherical harmonics. Such a parameterization is used, for instance, in
Peltier (1974), Wu and Peltier (1982) and Martinec (2000). Here, we
introduce the representation of the Eulerian gravitational-potential
increment, ϕE, and the displacement vector, u, and refer to Martinec
(2000) for parameterization of other field variables. For a fixed time, ϕE

and u depending on co-latitude and longitude,Ω=(θ,φ), are expanded
in a series of scalar and vector spherical harmonics, respectively:

ϕEðr;ΩÞ = ∑
∞

j=0
∑
m= j

m=−j
FjmðrÞYjmðΩÞ ;

uðr;ΩÞ = ∑
∞

j=0
∑
m= j

m=−j
½UjmðrÞSð−1Þ

jm ðΩÞ + VjmðrÞSð−1Þ
jm ðΩÞ + WjmðrÞSð0Þjm ðΩÞ� ;

ð1Þ

where 0≤ r≤awith a the radius of the Earth and r the radial distance.
The quantities [F, U, V, W]jm represent the spectral components, and
Yjm and Sjm(λ) are the respective scalar and vector spherical harmonics,
see Appendix A. The summations spread over the angular degree j and
azimuthal order m. The potential is defined according to

∇2ϕE + 4 π G div ðρ0uÞ = 0 : ð2Þ

The representation of ϕE and u in fully normalised spherical harmonics
enables easy derivation of the equations for GC motion by applying the
formalisms outlined in the theory of angular momentum (Varshalovich
et al., 1988). We solve the field equations directly in the time domain
and do not apply any Love-number approach.

The degree-1 terms of the surface displacement, U1m and V1m,
describe net translations relative to the considered reference system.
Among them, the center-of-figure (CF) motion is of most interest
which describes the integral motion of the surface, as if it would be
equally covered by an infinite dense array of points (Blewitt, 2003). In
contrast, the degree-1 term of the surface displacement, W1m,
describes a surface net rotation and is set to zero as one uniqueness
condition. The center-of-mass (CM) motion is defined by the first
moment of themass redistribution of the whole Earth (Blewitt, 2003).
The difference between CF and CM motions, the geocenter (GC)
motion, is of special interest due to its invariance with respect to the
chosen reference frame.

2.1. Center-of-figure motion

In the dynamic modelling of the motions due to a surface loading,
we define a reference-state configuration of the Earth and define a
reference system describing the position of mass points in this
configuration. Here, the reference state describes the equilibrium
state of a hydrostatically prestressed Earth where the reference
system coincides with the reference configuration. Therefore, CF and
CM coincide with the origin of the reference system. The variation of
CF with respect to the origin of the reference system is defined by the
net displacement of the surface. Considering Eq. (1), this results in

ucf : =
1
A
∫∂V udS

=
1
4π

∫Ω0
∑
jm
½UjmS

ð−1Þ
jm + VjmS

ð1Þ
jm + WjmS

ð0Þ
jm �dΩ ;

ð3Þ

where ∂V is the surface of the Earth andΩ0=4π is the full solid angle.
Solving the integral, the Cartesian components of this motion are

ux
cf = −1

2

ffiffiffiffiffiffi
2
3π

r
RefU11 + 2V11g ;

uy
cf =

1
2

ffiffiffiffiffiffi
2
3π

r
ImfU11 + 2V11g ;

uz
cf =

1
2

ffiffiffiffiffiffi
1
3π

r
ðU10 + 2V10Þ ;

ð4Þ

where ex, ey and ez are the Cartesian base vectors (see Appendix A).
Here, one has to bear in mind that only these linear combinations
describe a surface displacement, whereas the remaining parts, u(U1m,
V1m)−ucf, describe a deformation.

2.2. Center-of-mass motion

The CM motion represents the motion of the first moment. Due to
MacCullagh theorem (Munk and Macdonald, 1960), we define it here
as the translation necessary to achieve the configuration where the
degree-1 components of the gravitational potential, ϕE in Eq. (1)
vanish. Representing the displacement vector of the center-of-mass,
ucm, in Cartesian coordinates, we obtain as outlined in Appendix B.1

ux
cm =

3
2g0

ffiffiffiffiffiffi
2
3π

r
RefF11g =

1
g0

ffiffiffiffiffiffi
3
2π

r
RefF11g

uy
cm = − 3

2g0

ffiffiffiffiffiffi
2
3π

r
ImfF11g = − 1

g0

ffiffiffiffiffiffi
3
2π

r
ImfF11g

uz
cm = − 3

2g0

ffiffiffiffiffiffi
1
3π

r
F10 = − 1

2g0

ffiffiffi
3
π

r
F10

ð5Þ

where g0 is the surface gravity and F1m are the degree-1 components
of the potential increment ϕE due to internal- and surface-mass
redistribution.
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