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When monitoring geophysical parameters, data from segments that are contaminated by noise may have to be
abandoned. This is the case, for example, in the geoelectrical field measurements at some sites in Japan, where
high noise – due mainly to leakage currents from DC driven trains – prevails almost during 70% of the 24 hour
operational time.We show that even in such a case, the identification of seismic electric signals (SES), which are
long-range correlated signals, may be possible, if the remaining noise free data are analyzed in natural time along
with detrended fluctuation analysis (DFA).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In many cases of geophysical and/or geological interest, it happens
that for substantial parts of the time of data collection, high noise
prevents any attempt for extracting a useful signal. Data for such time
segments are removed from further analysis. The appearance of such a
noisemay be periodic as in the case treated in the present work. It is the
objective of this paper to examinewhether the remainingdata allow the
identification of long-range temporal correlations.

The present study was motivated from the results of geoelectrical
measurements in Japan aiming at the detection of Seismic Electric
Signals (SES), which are low-frequency (≤1 Hz) variations of the
electric field of the earth that precede earthquakes (Varotsos and
Alexopoulos, 1984a,b). SES sometime appears as a single signal lasting
for minutes but often many SES (hereafter called “pulses” as needed)
keep appearing during certain length of time, whichmay be as long as a
few days or more. Such a case is called SES activity. It has been shown
that the SESs in a SES activity have long range temporal correlations
characteristic to critical phenomena (Varotsos et al., 2002). The
measurements in Japan have detected clear SES either at noise-free
measuring sites or at noisy stations when the SES happened to occur at
midnight, i.e., when the noise level was low (Uyeda et al., 2000, 2002).
The major difficulty at many sites is the contamination of records by
high noise due to leakage currents from DC driven trains and other
artificial sources, against which some countermeasure such as inde-
pendent component analysis to extract signals has been attempted
(e.g., see Orihara et al. 2009). The low noise time occurs from 00:00 to

06:00 and from 22:00 to 24:00 local time (LT) when nearby DC driven
trains cease service, i.e., almost only 30% of the 24 h. Thus, the question
ariseswhether it is still possible to identify SES upon removing the noisy
data segments lasting for the period 06:00 to 22:00 every day. The
answer to this question is attempted in this paper for the casewhen the
duration of SES activity is much longer compared to those of individual
pulses, i.e., a fewdays to a fewweeks or evenmore, although admittedly
long lasting SES activity is rather seldom, limiting the applicability of the
results described below.

The key point in the present work is the use of the following two
modern methods: The natural time analysis of the remaining data and
the detrended fluctuation analysis (DFA). The present question differs
from the one inwhichwe investigated (Skordas et al., 2010) the effect of
the random in time removal of data segments of fixed length on the
scaling properties of SES activities. It also differs from the case in which
the lengths of the lost or removed data segments are random and may
follow a certain type of distribution (Ma et al., 2010).

We now briefly describe the time series analysis in natural time
χ, which is a new time domain (Varotsos, 2005; Varotsos et al., 2002,
2003a,b;). In a time series comprisingN events, the natural time χk=k/N
serves as an index for the occurrence of the k-th event. The evolution of
the pair (χk and Qk) is studied, where Qk is a quantity proportional to the
energy released in the k-th event. For dichotomous signals, which is
frequently the caseof SES activities, the quantityQk canbe replacedby the
duration of the k-th pulse. By defining pk=Qk/∑n=1

N Qn, we have found
that the variance κ1=bχ2N−bχN2, where b f(χ)N=∑n=1

N pk f(χk), of
the natural time χ with respect to the distribution pk may be used for
identifying criticality, and hence the SES activities. More specifically, the
following relation should hold for SES activities

κ1≈0:070 ð1Þ
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Beyond the condition of Eq. (1), we have shown that the SES activities,
when analyzed in natural time, exhibit infinitely ranged temporal
correlations and obey the conditions (Varotsos et al., 2005, 2006a,b):

S;SXbSu; ð2Þ

where S is the entropy S in natural time defined as: S≡bχlnχN−
bχNlnbχN (Varotsos et al., 2003a) and SX is the entropy obtained upon
time reversal. Eq. (2) states that bothSandSX are smaller than thevalueSu
(=ln2/2−1/4≈0.0966) of a “uniform” (u) distribution, e.g. when all pk
are equal.

The fact that SES activities exhibit critical dynamics, is believed to be
related to their generation mechanism (see Varotsos et al., 1993, and
references therein). In the focal area of an impending earthquake (EQ
hereafter), which contains ionic materials, the stress gradually
increases. In ionic solids a number of extrinsic defects are always
formed because they contain aliovalent impurities. These extrinsic
defects are attracted by the nearby impurities and hence form electric
dipoles the orientation of which can change through defect migration.
When the stress (pressure) σ reaches a critical value σcr, a cooperative
orientation of these dipoles occurs generating SES.

We now summarize the detrended fluctuation analysis DFA (Peng
et al., 1994; Taqqu et al., 1995) which is a novel method that has been
developed to address the problemof accurately quantifying long range
correlations in non-stationary fluctuating signals. It has been applied
to diverse fields ranging from DNA (Peng et al., 1993; Stanley et al.,
1999), to meteorology (Ivanova and Ausloos, 1999), and economics
(Vandewalle and Ausloos, 1997; Ivanov et al., 2004). DFA is, in short, a
modified root-mean-square (rms) analysis of a randomwalk. Inprinciple,
it estimates the deviations from the local trends ys(n) of a non-stationary
long time series of length N piecewise by dividing it into small segments
with length s and compute the Fluctuation function F(s), which is the
variance of ys(n):

F sð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

n=1
½ys nð Þ�2

s
ð3Þ

F(s) corresponds to the trend-eliminated rootmean square displacement
of the random walker. Then, the above computation is repeated for a
broad number of scales s to provide a relationship between F(s) and s.

When a power–law relation between F(s) and s, i.e.

F sð Þ∝ sα ð4Þ

is found, it indicates the presence of scaling-invariant (fractal) behavior
embedded in the fluctuations of the signal (Peng et al., 1994; Taqqu et al.,
1995). The fluctuations can be characterized by the scaling exponentα, a
self-similarity parameter: If α=0.5, there are no correlations in the data
and the signal is uncorrelated (white noise); the caseαb0.5 corresponds
to anti-correlations, meaning that large values are most likely to be
followed by small values and vice versa. If αN0.5, there are long-range
correlations, which are stronger for higher α (Bashan et al., 2008). Note
thatαN1 indicates anon-stationary local averageof thedataand thevalue
α=1.5 indicates Brownian motion (integrated white noise).

For stationary signals with long-range power–law correlations the
value of the scaling exponent α is interconnected with the exponent β
characterizing the power spectrum S(f)~ f−β (f=frequency) through
(Peng et al., 1993)

β = 2α−1 ð5Þ

Whenemploying natural time, DFA seems todistinguish (Varotsos et al.,
2003b) SES activities from artificial noise because, for the SES activities
the α-values lie approximately in the range

0:9≤α≤1:0; ð6Þ

while for the artificial noise (caused byman-made sources) investigated
in Greece (Varotsos et al., 2003a,b) the α-values are markedly smaller,
i.e.,α=0.65–0.8. In other words, the artificial noise recorded in Greece,
which at the most lasts for 24 h, may have long-range correlations, e.g.
α≈0.75 (see Fig. 9 of Varotsos et al. (2003a)), but none of several
artificial noises studied was found to exhibit infinitely ranged long-
range correlations (i.e., having α-value close to unity).

2. Data analysis and results

Let us suppose that we have a long time series of data s(i) (shown in
red in the example of Fig. 1), with a duration appreciably larger than
24 h for instance, and we are forced to remove the same segment of
these daily data. The portion of the 24 hour data that remain will be
hereafter labeled pr and the number of data corresponding to one
period, say 24 h, T. Thus, every T samples, (1−pr)T of them (belonging
to the shaded parts of Fig. 1) are removed. The remaining segments
(blue in Fig. 1) are concatenated to form the new time series c(i) which
is subsequently read in natural time. We now impose the following
conditions (7) and (8) on c(i) for classifying the signal as SES activity.
The condition (7) comes from the relation (6) after considering the
reasonable experimental error:

0:85≤α≤1:10 ð7Þ

The condition (8) comes from Eqs. (1) and (2) also by considering the
reasonable experimental error in κ1:

jκ1−0:07 j ≤0:01;S≤Su;S−≤Su ð8Þ

In the following subsections, in order to solve our problem, synthetic
signals will be produced and analyzed whether they obey conditions (7)
and/or (8) using a Monte Carlo comprising 103 realizations. The Monte
Carlo procedure has been used to “average” over the possible realizations
of the synthetic SES activities and noises that will be discussed later in
Sections 2.1 and 2.2 as well as the fact that both types of electric signals
may start any timeof theday. Thus, one should randomly select an integer
iinit from1up toT, andkeep in c(i) the samples s(iinit) to s(iinit+prT−1)of
s(i), i.e.,wekeepprT samples in total. Thenext segment tobekept in c(i) is
(1−pr)T samples after s(iinit+prT−1), starting from s[iinit+prT−1+
(1−pr)T+1=iinit+T] up to s(iinit+T+prT−1) and so on (see the blue
lines in Fig. 1). This way we periodically remove (1−pr)T samples and
keep prT every T samples from the original signal s(i). This Monte Carlo
simulation allows us to evaluate the probability to identify the original
signal as a SES activity.

The probability that the condition (7) is satisfied will be hereafter
labeled p1. By the same token, the probability to satisfy the condition (8)
is designated by p2. Finally, the probability to obey either condition (7)
or condition (8) will be labeled p3. Upon considering the number of
the Monte Carlo realizations (M=103), a plausible estimation error
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Fig. 1. An example of the procedure described in Section 2.1, showing data segments that
are periodically removed every T≈813 arbitrary units from the original dichotomous
time-series (red). Thegray shadedareas correspond to thehighnoise periods (e.g. 06:00−
22:00 LT in Japan) which have to be discarded daily.
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