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Based on the theoretical analysis and finite–difference simulations, we study the onset and evolution of
tabular compaction bands. In numerical models the bands are initiated as constitutive instabilities resulting
from the deformation bifurcation. Then some bands are dying, while others continue to evolve accumulating
the inelastic deformation/damage and compressive stress at their tips. The stress concentration/increase,
however, does not exceed 0.1% of the background value. Starting from some stage, the bands begin to
propagate similarly to cracks. At the next stage the propagation slows down simultaneously with the
beginning of bands' thickening that occurs due to incorporation of not yet compacted material at the band
flanks. The response of the already compacted “core” part of the band becomes mostly elastic. Then the
propagation practically stops and the bands undergo only the heterogeneous thickening, maximal in the
middle of the band and reducing toward its tips. This scenario obtained directly in the models (without any
specific hypotheses about the propagation mechanism) appears more complicated thanwhat can be expected
from the linear elastic fracture mechanics (anti-crack) model. The band propagation distance is proportional
to the initial (resulted from the bifurcation) band length that in turn is proportional to the hardening modulus
and theoretically can reach infinity.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

After the discovery of compaction bands in the field (Mollema and
Antonellini, 1996), there has been a growing amount of studies of
these features based on the theoretical analysis (e.g., Chemenda,
2009; Garagash, 2006; Issen, 2002; Issen and Rudnicki, 2000;
Rudnicki, 2007; Sternlof et al., 2005; Tembe et al., 2008), the lattice
(Katsman et al., 2005), discrete element (Wang et al., 2008), and
finite–difference (Chemenda, 2009; Stefanov and Thiercelin, 2007)
numerical modeling, as well as the experimental rock (e.g., Baud et al.,
2004; Fortin et al., 2006; Olsson and Holcomb, 2000; Wong et al.,
1997) and synthetic rock analogue (Nguyen et al., 2011) testing. It
follows in particular that the aspect of compaction bands generated in
the conventional axisymmetric compression tests in the cylindrical
samples is not the same as that of the natural compaction bands. In the
laboratory, these features typically represent tight zigzag discrete
bands with fairly sharp angular junctions of the segments (Fig. 1a).
They first appear at the sample along-axis ends and then progressively
toward the sample middle, yielding a picture of a propagating (in the
direction perpendicular to the bands) discrete banding. In the field,
the compaction bands can have wavy (crooked) forms (Mollema and
Antonellini, 1996) resembling the “experimental” bands, but they can
also be linear (planar) and organized in regular tabular sets. The size

of the bands (their thickness d and length L) can vary in large limits.
For example, in the Jurassic Navajo Sandstone (Utach) d is 0.5–1.5 cm
and L, 5–10 m (Mollema and Antonellini, 1996). In the Jurassic Aztec
Sandstone (Valley of Fire, Nevada), Fig. 2 the bands are tens of meters
long, 1–2 cm thick (in the middle), with band spacing λ of tens of
centimeters (Sternlof et al., 2005).

The difference between the compaction bands generated in the
laboratory and nature may suggest that the mechanism of their
formation is also different. The “experimental” bands are often
considered as resulting from the deformation bifurcation that leads
to the formation of σ1-orthogonal bands (σ1Nσ2Nσ3 are the principal
stresses, the compressive stress is positive) (Issen and Rudnicki,
2000). This banding/localization regimewas predicted theoretically in
the frame of the continuous deformation bifurcation analysis (Issen
and Rudnicki, 2000; Ottosen and Runesson, 1991; Perrin and Leblond,
1993) that considers the conditions of a constitutive instability in the
case when the material within and outside the band is in the same
elastic-plastic state. It was stated by different authors that conclusions
of this analysis are in a quantitative disagreement with the available
experimental data (e.g., Baud et al., 2006). In particular, the theory
predicts a too negative value of the dilatancy factor β for the
compaction banding to occur. Yet, it does not predict (consider) the
propagating character of compaction banding and zigzag shape of the
bands.

Based on the virtual work principle, Garagash (1981, 2006)
considered a bifurcation resulting in a set of parallel loading bands
with the material outside them undergoing elastic unloading.
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Chemenda (2009) analyzed this case (corresponding to the discon-
tinuous bifurcation) using both classical bifurcation and finite–
difference numerical approaches. Tight compaction bands were
predicted at small negative β well corresponding to the experimen-
tally obtained values. The numerical simulations confirmed this
theoretical result and reproduced both zigzag shape of the bands
and their progressive appearance from the sample (numerical model)
ends (where the compressive load is applied) toward the middle
(Fig. 1b). Such a propagation of the deformation in the direction
perpendicular to the bands is caused by the boundary effect and is
related to the evolution of the material constitute properties with
deformation (Chemenda, 2009). Thus a constitutive instability seems
to be rather a plausible mechanism of compaction banding observed
in the laboratory experiments.

As far as long linear (planar) natural compaction bands are
concerned, their thickness reduces from the central bands' segments
toward the extremities (tips), Fig. 2b (Mollema and Antonellini, 1996;
Sternlof et al., 2005). This suggests their penny-shape geometry in 3-D
and compression anti-crack (opposed to tension mode I crack)
propagation mechanism analyzed in the framework of linear elastic
fracture mechanics (LEFM) (Fletcher and Pollard, 1981; Mollema and
Antonellini, 1996; Rudnicki, 2007; Sternlof et al., 2005; Tembe et al.,
2008). Such a mechanism is different from the deformation

bifurcation. It implies existence of soft/weak initiation zones (inclu-
sions) where the band propagation can be initiated due to the stress
concentration at the inclusions extremities.

In this paper we present results from the finite–difference
simulations that reproduce tabular compaction bands. They are
initiated as constitutive instabilities, then propagated similar to cracks
along their strike and thickened during further deformation. As in the
natural bands the thickness of “numerical” bands progressively
reduces toward the band ends. The evolution of a tabular band set
thus includes two mechanisms. The first one is the deformation
bifurcation that results in the initiation of a set of bands that
propagate at the next stage. This propagation resembles the
propagation of an anti-crack. The stress concentration at the band
tips is, however, very small and the propagation limited. At the initial
stages of propagation the band thickness does not change and the
material within the whole band (not only at its tips) is affected by the
inelastic deformation (damage). At the later stages the band thickens
and the inelastic deformation is concentrated along the band
perimeter, while the response of the already compacted “core” part
of the band becomes mostly elastic.

2. Summary of the results ofmulti-band discontinuous bifurcation
analysis

The initiation of a compaction band set is supposed to occur
through the constitutive instability, which defines the principal
geometrical attributes of the set such as initial band spacing λ0,
length L0 and thickness d0. These parameters will evolve during the
post bifurcation deformation, but their final values will be strongly
affected by the initial ones that can be predicted from the
discontinuous bifurcation analysis. The complete analysis and all
relevant references are given in (Chemenda, 2009). Here we resume
the results. It is assumed that the loss of a constitutive stability results
in the initiation of a regular set of discrete (expressed not only in
terms of the deformation rate, but also of the mechanical response)
parallel compaction bands. The material within the bands undergoes
inelastic loading/deformation, while outside the bands it is elastically
unloading after initial elastic-plastic straining. The average spacing λ0

between the bands resulted from the bifurcation is

λ0 =
d0 18 h−hc
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where Cαβ=[2β(1+ν)−3N3(2ν−1)][2α(1+ν)−3N3(2ν−1)], α
is the internal friction coefficient, ν is the Poisson's ratio, h=H/G is the
normalized hardening modulus, H is the hardening modulus, G is the
shear elastic modulus,
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c is the normalized hardening modulus at which λ0=∞ or the

spacing parameter χ=d0/λ0 is zero, N3 = −0:5 N + 0:5
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N = −s2 = τ, s2 is the intermediate principal deviatoric stress,

τ = 0:5sijsij
� �1=2

is the Mises equivalent shear stress; σij is the stress;

sij=σij−δijσ is the stress deviator, δij is the Kronecker delta, σ=σii/3
is the mean stress, the superscript “c” stands for compaction
(i=1, 2, 3). The dilatancy factor β expresses the rate of change of
the inelastic volumetric deformation εp with an inelastic equivalent
shear deformation γp and is defined as β = dεp = dγp (Nikolaevskiy,
1967). Eq. (2) for hc

cr=hχ=0
c is equivalent to that for the critical

hardening modulus following from the continuous bifurcation
analysis (Issen and Rudnicki, 2000; Ottosen and Runesson, 1991;
Perrin and Leblond, 1993).

Fig. 1. (a) Discrete compaction banding in Bentheim sandstone sample under vertical
axisymmetric compression at different axial strains (from Baud et al., 2004);
(b) Patterns of accumulated inelastic equivalent shear deformation γp for successive
stages of the evolution of numerical model under axisymmetric compression stress
(from Chemenda, 2009).
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