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Criticality in earthquakes. Good or bad for prediction?
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Through the analysis of the correlation functions in simulations of an earthquake model, the critical
properties of the system are studied. Simulations are performed in a more realistic modification of the
Olami–Feder–Christensen model of earthquakes and result in uncorrelated avalanches distributed following
a power-law with weak signs of foreshocks and aftershocks. The spatial autocorrelation function of the
system and other structural variables are computed in every step of the simulation. The spatial
autocorrelation between points separated from each other by a constant distance equal to 1/4 and 1/8 of
the linear size of the system shows large variations, temporally correlated with the time series of avalanche
size; i.e., spatial correlation values are in average very high before a large earthquake, very small after a large
earthquake and they evolve between these two states. However, the temporal average of the spatial
autocorrelation over the whole simulation shows values close to zero, result that is in contradiction with the
idea that the correlation length is of the same order as the linear size of the system (diverging in an infinite
system), which is the main signature of a critical scenario. By averaging the autocorrelation in smaller time
windows, the critical properties of temporal states can be used as an indication of upcoming catastrophic
events. The structural variables are also correlated with the occurrence of large avalanches, suggesting the
possibility of monitoring these variables in order to achieve prediction.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

With the pioneering work of Wegener (Wegener, 1929) and the
establishment of the plate tectonics theory, scientists started to
understand the cause and nature of earthquakes. However, statistical
studies appearedmuch earlier (Omori, 1894), urged by the necessity of
predicting earthquakes. When, where and how big is the next
earthquake have been the questions to answer, and a considerable
progress have been achieved concerning the two last ones, i.e., zones
with high activity are known and risks can be evaluated (Reiter, 1991),
which is essential in building design, planning of land use, estimation of
earthquake insurance, etc. However, answering “when” has beenmuch
more difficult. Some progress in temporal dependence has also been
achieved (Shimazaki and Nakata, 1980; Davis et al., 1989), but attempts
to reduce or fix the time window in forecasts, by the analysis of
precursors or pattern recognition tools, have generally failed (Geller,
1997; Kagan, 1997a). In 1989 Bak and Tang (1989) classified earth-
quakes as “Self-organised critical” (SOC) phenomena (Bak et al., 1987).
This classification, in addition to the lack of success in predictability, has
developed the idea that the crust is at a critical state where a minor

perturbation can trigger an earthquake of any size and duration,making
them inherently unpredictable (Geller et al., 1997; Main, 1999). This
paper will focus on this analogy between critical systems and
earthquake behaviour as well as the consequences of criticality for the
predictability of the systems. Besides the earthquakes' domain, the
results presented here touch other phenomena: snow avalanches
(Birkeland and Landry, 2002), solar flares (Hamon et al., 2002),
evolution (Sneppen et al., 1995), stock markets (Lee et al., 1998),
superconductingvortices (Altshuler and Johansen, 2004;Altshuler et al.,
2004), piles of grains (Frette et al., 1996; Altshuler et al., 2001; Aegerter
et al., 2003), etc; where the unpredictable character of power-law
distributed events often has been taken for granted because of their
“critical” properties.

1.1. Critical phenomena

In Physics, the classical scenario of critical phenomena takes place
during a second order phase transition (Stanley, 1987). The text-book
example is the transitionwhere apermanentmagnet loses itsmagnetism:
its magnetic properties cease when the temperature is increased above a
certain critical temperature Tc. Below this temperature all the spins are
aligned in the same direction, creating amagnetic field. Largefluctuations
in spins do not occur at low temperatures, so the system will remain
unchanged. Above the critical temperature the spins' directions are
random and change direction randomly, frequently and individually. The
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system is alreadydisordered, sono large-scale changeswill happen. There
is no overall magnetic field. However, at the critical temperature itself
large fluctuations occur and different snapshots of the system show
different patterns — but all of the patterns will be statistically similar, in
that clusters of aligned spins are surrounded by areas with spins oriented
in the opposite direction. The clusters are of all sizes and their distribution
follows a power-law. Three characteristic of the critical state will be used
in our analysis:

a) Divergence of the correlation length (ξ): the temporal average of
the spatial autocorrelation function

〈CAsðd; tÞ〉t = 〈∑ðf ðx; yÞf ðx0; y0ÞÞ−〈f ðx; yÞ〉2
∑ðf ðx; yÞ−〈f ðx; yÞ〉Þ2 〉t ð1Þ

where f(x,y) represents the structure of the system (in two dimensions)
and d corresponds to the distance between (x,y) and (x′,y′), can generally
be fitted (∀T≠Tc) as an exponential decay in the form CAs(d)∼exp(d/ξ).
At the critical point, the correlation length ξ is proportional to the linear
size of the system (diverging in an infinite system). The temporal average
is necessary because the calculus is performed in a snapshot of the
dynamics (a microstate) and any physical measure implies an average
over many different microstates, which is equivalent to a temporal
average if the system is ergodic (Newman and Barkema, 1999).

b)Divergence of the correlation time (τ): the temporal autocorrelation
function

CAtðtÞ =
∑ðf ðtiÞf ðti + tÞÞ−〈f ðtiÞ〉2

∑ðf ðtiÞ−〈f ðtiÞ〉Þ2
ð2Þ

can be fitted as an exponential decay in the form CAt(t)∼exp(t/τ). Far
from the critical point, the correlation time τ is small, so the system
will quickly recuperate from a perturbation. At the critical point, τ
diverges due to the fact that the system hesitates between the two
states and the dynamics turn slow; perturbations can move the
system away from its equilibrium state during long periods of time.
Both ξ and τ present power-law dependences with the reduced
temperature t=(T−Tc)/Tc in the way ξ = jt j−νand τ = jt j−zν, so
they relate to each other through τ = ξz (Newman and Barkema,
1999).

c) As the size of the system increases, the transition between the
two states becomes sharper, and it is infinitely sharp in an infinite
system (Newman and Barkema, 1999).

2. The model

Simulation in a very simple cellular automatonmodel of earthquakes
will guide us in the discussion of criticality and predictability aiming
towards a more general frame. By mapping the Burridge–Knopoff
spring-block model (1967) into a cellular automaton, Olami, Feder and
Christensen (OFC) demonstrated that through introducing dissipation
in the system, the exponent of the power-law of the avalanche size
distribution can be tuned (Olami et al., 1992). If 20% of the energy is lost
in every redistribution of forces after one block slips, the distribution
resembles the Gutenberg–Richter law (Christensen and Olami, 1992).
The simulations presented in this article take place on a lattice of L×L
sites (L=128, 256, 512) with open boundary conditions, where a few
modifications to the original OFCmodel make the systemmore realistic
(Ramos et al., 2006). The spring-block model consists of a two
dimensional array of blocks on a flat surface. Each block is connected
bymeans of springs with its four nearest neighbours, and in the vertical
direction, to a driving plate which moves horizontally at velocity v.
When the force acting on a block overcomes the static friction of the
surface, the block slips. A redistribution of forces then takes place in the
neighbours that eventually triggers new displacements. In our model,

the force on each block is stored in a site of the lattice, and the static
friction thresholds are distributed randomly following a Gaussian
centred at 1.0 with a standard deviation equal to 0.001. Starting from
zero, a constant amount of force equal to 10−4 is added to every site in
each step. Eventually, one or several sites can reach their thresholds; the
site is then set to zero and a fraction α of its force is redistributed to its
neighbours. If one of the neighbours reaches its threshold, the process is
repeated until all the sites have their values below the threshold. After a
site is set to zero, a new random threshold is imposed (a new value of
static friction coefficient for a new place). The avalanche size is defined
as thenumber of sites involved in theavalanchebefore the force is raised
again. The values of α decrease with the dissipation (percentage of lost
energy, EL) according to α=(1−EL/100)/4 and they have been chosen
randomly following a Gaussian distribution centred at 0.2 with a
standard deviation σα. When a block slips α is changed.

The rules are the following:

At t=0: F(x,y)=0; threshold(x,y)=Gaussian(mean=1, sd=0.001)
∀x,y∈[0,L)

∀tN0: F(x,y)=F(x,y)+0.0001 ∀x,y∈[0,L)
While F(x,y)≥ threshold(x,y)

{alpha=Gaussian(mean=0.2, sd=0.005)
F(x+1,y)=F(x+1,y)+F(x,y)* alpha
F(x−1,y)=F(x−1,y)+F(x,y)* alpha
F(x,y+1)=F(x,y+1)+F(x,y)* alpha
F(x,y−1)=F(x,y−1)+F(x,y)* alpha
F(x,y)=0
Threshold(x,y)=Gaussian(mean=1, sd=0.001)}

Avalanche size=number of sites involve in the avalanche.

These simulations continue the studies developed by (Ramos et al.,
2006) whose main focus corresponded to the situation where the
dissipation is uniform and constant (σα=0). As a result, a nontrivial
quasi-periodicity rules the dynamics, suggesting that the earthquake's
natural behaviour is a quasi-periodic state, and that the variations or
absence of periodicity is due to changes in the dissipative regime and/or
in the relative velocity of the plates and/or in the amount of energy that
can be stored in a given zone between two tectonic plates (Ramos et al.,
2006). See also (Kagan, 1997b) for a discussion about quasi-periodicity
in earthquakes. The OFC model also displays quasi-periodic behaviour
(Ramos et al., 2006), but is less strong that in ourmodel, hidden in some
way in the more efficient manner to load the system. All the other
known features of the OFC model remain (coexisting with the quasi-
periodicity), and the distributions of avalanches display power-law
behaviours with exponents that decrease with the dissipation. For
α=0.2 (20%of the energy is dissipated) the exponent is equal to−1.91.
With the aim of removing the periodicity, in order to reach a more
realistic scenario, the values of the dissipation simulated in this article
are distributed following a Gaussian. For σα=0.005 the distribution of
avalanches suffers no changes. However, Fig. 1b shows that there is
almost nocorrelation between the avalanches; just small bumps slightly
above the noise level in the autocorrelation function of large avalanches,
indicating the loss of quasi-periodicity. Forσα=0.01 small changes start
to be noticed in the avalanche distribution and for σα=0.02 the
distribution in no longer a power-law. That is the reason why the
simulations have been performed with α=0.2 and σα=0.005: to get
uncorrelated avalanches distributed according to a power-law with an
exponent that resembles the Gutenberg–Richter law (Gutenberg and
Richter, 1956).

Following thework introduced by Ramos et al. (2009), where for the
first time experimental SOC avalanches have been predicted, global
structural variables have been measured in every step of the simula-
tions. They are the average force, the standard deviation of the average
force and the spatial correlationbetween all pairs of sites separated from
each other 1/4 and 1/8 of the linear size of the system L.
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