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We propose a new variant of the sandpile model, the long-range connective sandpile model, by means of
introducing randomly internal connections between two separated distant cells. The long-range connective
sandpile model demonstrates various self-organized critical states with different scaling exponents in the
power-law frequency-size distributions. We found that a sandpile with higher degree of randomly internal
long-range connections is characterized by a higher value of the scaling exponent for the distribution,
whereas the nearest neighbor sandpile is possessed of a lower scaling exponent. Our numerical experiments
on the long-range connective sandpile models imply that higher degree of random long-range connections
makes the earthquake fault system more relaxant that releases accumulated energy more easily and
produces fewer catastrophic events, whereas lower degree of long-range connections possibly caused by
fracture healing very likely motivates accelerating seismicity of moderate events.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Many geophysical phenomena are scale invariant and exhibit the
power-law distribution (Turcotte, 1997; Dodds and Rothman, 2000),
which is the only statistical distribution not including a characteristic
scale. A striking example is the Gutenberg-Richter relation for the
frequency-magnitude statistics of earthquakes. The scaling exponent
and its associated variation is then a matter of fundamental
importance in such power-law distribution. Specifically, in the study
of seismicity evolution, the scaling exponent in the Gutenberg-Richter
relation, which is well known as the b-value, has been very often
discussed in the literature and considered as a monitoring index
related to the forthcoming large earthquakes (Smith, 1986; Urbancic
etal, 1992; Wiemer and Wyss, 1994; Henderson et al., 1994; Guo and
Ogata, 1995; Legrand et al., 1996; Wyss, 1997; Lapenna et al., 1998;
Henderson et al., 1999; Barton et al., 1999; Oncel and Wilson, 2004;
Wyss et al., 2004; Mandal et al., 2005; Wu and Chiao, 2006). The
reductions in the b-value before a large earthquake have been
reported in many researches. The reduced b-value is probably caused
by the quiescence of smaller earthquakes and/or the activation of
moderate earthquakes (e.g. Chen, 2003; Chen et al., 2005; Wu and
Chiao, 2006). For example, observed before the 1999 M,, 7.6 Chi-Chi,
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Taiwan earthquake were the quiescence of earthquakes with
magnitudes smaller than 4 (Fig. 4 in Wu and Chiao, 2006) and
activation of events with magnitudes larger than 5 (Fig. 3 in Chen,
2003).

Numerical experiments in tending to comprehend seismicity had
mainly been based on simple conceptual models such as the spring-
slider model of Burridge and Knopoff (1967), the sandpile model of
Bak et al. (1987), the block structure model of Gabrielov et al. (1990),
and the lattice-solid model of Mora and Place (1994). Among them
two types of simple cellular automata models are the spring-slider
model (Burridge and Knopoff, 1967) and the sandpile model (Bak et al.,
1987). In the sandpile model a hallmarked state, which is very well
known as the self-organized criticality (SOC) state and characterized
by the frequency-size power-law distribution, is established solely
because of the dynamical interactions among individual elements of
the system. Since the concept of self-organized criticality was
introduced in Bak et al. (1987), earthquakes have been identified as
an example of this phenomenon in nature (Bak and Tang, 1989;
Sornette and Sornette, 1989; Ito and Matsuzaki, 1990) and the
observation of the Gutenberg-Richter law has been suggested to be
the manifestation of the self-organized critical state of the dynamics
of the earthquake faults.

For earthquake studies, the sandpile model sheds new insights into
the earthquake physics in addition to those derived from earlier, much
complicated spring-slider models (Burridge and Knopoff, 1967;
Rundle and Jackson, 1977; Carlson et al., 1994). Here we propose to
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invoke an alternative variant of the sandpile model to demonstrate
variations in the scaling exponent of the power-law distribution by
means of introducing randomly internal connections between
separated distant cells. Note that the internal networks of either the
conventional spring-slider or sandpile models are essentially the
nearest neighboring networks. We examine the systematic impacts on
the scaling exponents of these randomly distant connections in our
modified sandpile model. The implications on the earthquake fault
systems are then discussed in the end of this paper.

2. Long-range connective sandpile models and its frequency-size
distributions

We build our sandpile model by a very simple set of rules that is
very similar to the original one (Bak et al., 1987). For a square grid of L
by L cells, we randomly throw sands, one at a time, onto the grid. In
the original sandpile model, once the total amount of the accumulated
sands within a single cell reaches the threshold amount of 4, they will
be redistributed to the four adjacent cells (the nearest neighbors) or
lost off the edge of the grid. All the cells receiving grains from their
neighbors will be checked, and the redistribution would be continued
further away if any one of them reaches consequently over the
threshold too. For each throw of new grains, the redistribution
proceeds until none of the meshes receiving new grains exceeds the
threshold. The total amount of cells involved in the redistribution
process initiated by a single throw is defined to be the size of the
event. Note that the total amount of grains retained within the grid
increases linearly in the beginning transient thousands of iterations
and then stays at a quasi-static value with small fluctuations.

Our modified rule of randomly internal connections is very similar
to the implementation of Watts and Strogatz (1998). For any particular
cell, when the accumulated grains exceed the threshold and
redistribution occurs, one of the original nearest neighbor connections
confronts a chance with prescribed connective probability P,, 0<P.<1,
of redirecting to a randomly chosen, distant cell and so the original
connection is replaced by a randomly chosen mesh that might be
faraway from the toppling cell. We may call such version of sandpile
model the long-range connective sandpile (LRCS) model. Apparently,
when P.=0, the LRCS model reduced to the original nearest neighbor
sandpile model.

We perform a series of simulations each with 10° throws of single
grain on a square grid with 50x50 meshes, starting with the original
nearest neighbor sandpile (P.=0) and then gradually increasing the
connective probability P.. For each P, the frequency-size power law
and the manifested SOC state always emerge robustly. The power-law
frequency-size distributions demonstrating the scale invariance on
the log-log plot for two experiments with P.=0 and P.=1 are very
distinct (Fig. 1). The breakdown of the power law at the extreme of
great events is obviously due to the limited size of the experimental
grid, the so-called finite-size effect.

The frequency-size power law is not a linear-normal relation.
Hence, all the data points for the distribution need not to have the
same weight as supposed when a linear relation is regressed with a
standard least-square method. For example, if the distribution has two
large events instead of one, it will change very much the result from
using a least-square method. To address the issue of different
weighting in a power-law distribution, we adopt a weighted least-
square method to assign different fitting weights for different data
points of the distribution (Shi and Bolt, 1982). The results lead to a
scaling exponent of 1.06 characterizing the frequency-size statistics
for the original nearest neighbor sandpile model (Bak et al., 1987),
whereas a higher scaling exponent of 1.32 for the LRCS model with
P.=1 (Fig. 1).

As gradually increasing the connective probability P. from 0 to 1,
we have found that there is a systematic steady increase of the scaling
exponent along with a notable decrease of the amount of total grains

staying on the grid (Fig. 2). The comparison suggests that, with higher
degree of random long-range connections that is obtained by invoking
higher connective probability P, the critical state is characterized by a
sandpile with more small avalanches involving only a few cells and,
consequently, the higher value of the scaling exponent for the
frequency-size distribution. In other words, higher degree of random
long-range connections actually makes the system more relaxant that
releases the potential of building up catastrophic avalanches more
easily and produces fewer catastrophic avalanches.

3. Conclusion and discussion

There have been reported that an observed feature associated with
the earthquake statistics is a significant increase of moderate earth-
quakes and a noticeable reduction of the b-value of the Gutenberg-
Richter relationship prior to great earthquakes (e.g. Sykes and Jaume,
1990; Henderson et al., 1994; Bowman et al., 1998; Jaume and Sykes,
1999; Chen, 2003; Wu and Chiao, 2006). An immediate implication of
our experiments to the temporal evolution of the seismicity is that, as
the tectonic loading is slowly driving the earthquake fault system
through the cycle of earthquakes leading to the catastrophic event,
there might be different phases all bearing characteristics of SOC. The
initial phase is characterized by a small but notable random long-
range connection with 1>P.>0. It then evolves gradually towards
more and more regular nearest neighbor connection with P.~0 such
that the manifestation is the noted accelerating seismicity of moderate
size and a reduction of the b-value (Fig. 2). After the occurrence of
some great earthquakes, possibly due to the activity of faults, the
change of pore water pressure or the dynamical triggering of seismic
waves, the earthquake fault system is very likely to bear with a
significant degree of long-range connections with higher P.. Bursting
aftershock activity might well be the manifestation of a raised long-
range connection. Then, the system heals gradually along with the
tectonic loading and gets back to the initial phase preparing for the
next cycle of extreme events.

The mechanism depicted above is utterly different from the
temporal growth of long-range correlation length on the system in
the critical point theory of earthquakes (Bowman et al., 1998; Jaume
and Sykes, 1999; Rundle et al., 1999; Rundle et al., 2000). To the critical
point theory of earthquakes, the correlation length of the regional
stress field grows prior to the catastrophic event. The origin of
accelerating seismicity of moderate events lies in the growing
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Fig. 1. Power-law frequency-size distributions for two simulations of the long-range
connective sandpile models with P.=0 and P.=1, respectively. Also shown are two
regression lines, with slopes of 1.06 and 1.32, best fitting the power-law distributions
from the weighted least-square method. Note that the long-range connective sandpile
with P.=0 is identical to the original nearest neighbor sandpile by Bak et al. (1987).
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