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1. Introduction

Let ¥ denote the class of functions of the form

-l o0
f@ =+ ad (1.1)

k=1

which are analytic in the punctured unit disk U* = {z : 0 < |z| < 1} = U \ {0}, with a simple pole at the origin.

If f (z) and g(z) are analytic in U, we say that f(z) is subordinate to g(z), written f < g orf(z) < g(z)(z € U), if there
exists a Schwarz function w(z) in U with w(0) = 0 and |w(z)| < 1(z € U), such that f(z) = g(w(z)), (z € U).lfg(z2) is
univalent in U, then the following equivalence relationship holds true:

f(z) <gz) (zeU) <& f(0)=g(0) and f(U) CgU).
For functions f (z) € X, given by (1.1) and g(z) € ¥ defined by

1 (o]
g0 =—+ > bz, (12)
k=1

the Hadamard product (or convolution) of f (z) and g(z) is given by

] o0
8@ =~ +) abz* = g+)@). (13)
k=1
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Analogous to the operators defined by Jung, Kim and Srivastava [2] on the normalized analytic functions, we now define
the following integral operators Pg, Q¢ : £ — X:

pe —pify = P 1 /Z tf <log E>a_1f(t)dt (@>0,>0:zeU" (1.4)
B B C(a) 2841 J, t ’ ’ ’ .
v papn DB+a) 107 o\ _ .
Qf =Qif(2) = BT 7 /0 t (1 Z) fOdt (o, B> 0;z € UY) (1.5)
and
Jp =1sf @ = Zﬂ% | drode ¢ 0zeun (16)

where I' («) is the familiar Gamma function.
Using the integral representation of the Gamma and Beta functions, it can be shown that

Remark 1. For f(z) € X given by (1.1), we have

o _1 - ,3 “ k
Pﬂf(z)—z—l—k:] (k'f‘ﬂ‘i‘l) agz", (¢>0,8>0) (1.7)
1 T . T(k 1

Q@ =+ (ﬁ(;)a)zr(k(_:;f_z+)l)akzk @>0,8>0) (18)

k=1

and

Jﬂf(2)=1+iiakzk (B >0). (1.9)

z =k+p+1

By virtue of (1.7), (1.8) and (1.9) we see that
Jof @) = Pif (2) = Q4f @),
z (PZf(Z))/ =BP;'f(2) — (B+ DPf(@) (a>1,6>0) (1.10)

and

2(Qf@) =B+a—-1Q f@) - (B+0)Qif (@) (¢>1,>0). (1.11)

Now we introduce the following subclasses of ¥ associated with the integral operators Pg f(z) and Qg f(2).
Definition 1. For fixed parameters A, B(—1 < B < A < 1), a function f(z) € X is said to be in the class Eg’a (A, A, B) if

1+ Az
1+ Bz

!/
—z? {(1 —A) (ng(z))/ + A (Pg”f(z)) } < (z € U), (1.12)
wherea > 1,8 > 0and A > 0.
Definition 2. For fixed parameters A, B(—1 < B < A < 1), a function f(z) € X is said to be in the class Zg,u()\, A, B) if

1+ Az
14+ Bz

— 2 {(1 -0 (Qf @) +n (Qf‘f”f(z))/} < z e, (1.13)

wherea > 1,8 > 0and A > 0.
In this paper, we drive some subordination results of the classes EZ,H (A, A, B) and E%a (A, A, B), and investigate several
convolution properties of functions which have been defined here by means of the integral operators Pg‘ f(z) and Qg f(2).

2. Preliminaries

To prove our main results, we need the following lemmas.

Lemma 1 ([1], see also [4]). Let ¢(z) be analytic in U and h(z) be analytic and convex (univalent) in U with h(0) = ¢(0) = 1.
If

<h@)(Re(y) =0; y #0; zel), (2.1)

$(2) + z¢/(2)
Y
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