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The prediction of substantially short survivability in patients is extremely risky. In this study,
we proposed a probabilistic model using Bayesian network (BN) to predict the short surviv-
ability of patients with brain metastasis from lung cancer. A nationwide cancer patient
database from 1996 to 2010 in Taiwan was used. The cohort consisted of 438 patients with
brain metastasis from lung cancer. We utilized synthetic minority over-sampling technique
(SMOTE) to solve the imbalanced property embedded in the problem. The proposed BN was
compared with three competitive models, namely, naive Bayes (NB), logistic regression (LR),
and support vector machine (SVM). Statistical analysis showed that performances of BN, LR,
NB, and SVM were statistically the same in terms of all indices with low sensitivity when
these models were applied on an imbalanced data set. Results also showed that SMOTE
can improve the performance of the four models in terms of sensitivity, while keeping high
accuracy and specificity. Further, the proposed BN is more effective as compared with NB, LR,
and SVM from two perspectives: the transparency and ability to show the relation of factors
affecting brain metastasis from lung cancer; it allows decision makers to find the probability
despite incomplete evidence and information; and the sensitivity of the proposed BN is the
highest among all standard machine learning methods.

© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

in each individual [1]. Although regression models have been
developed to predict survivability [1-5], these models still have
restrictions in applying medical data that are uncertain, com-

Physicians generally predict the survivability of patients from
the combination of clinical symptoms and signs, as well as
from laboratory data, based on their experience and judgment.
The prediction precision that depends on the levels of expe-
rience and length of patient-physician relationship may vary

plex, and have nonlinear variables with implicit interactions
between the variables themselves [6]. Predicting the short sur-
vivability of cancer metastases patients (i.e., survival of less
than two months) is thus challenging, and attempts for precise
prediction were not completely successful.
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Lung cancer often spreads to the brain, given that 65% of
patients diagnosed with primary tumor in their lungs have
brain metastases [7]. Therefore, modeling and predicting the
development of brain metastasis from lung cancer is neces-
sary. Whole brain radiotherapy (WBRT) and corticosteroids are
the standard recommended treatments to effectively control
symptoms for patients with brain metastases [8] and surviv-
ability prognosis is crucial to administer such treatment. A
patient with short survivability may not gain any advantage
from additional radiation [9-11]. A patient who is expected
to have short survivability can be recommended by treat-
ment using steroids alone. Therefore, correct classification of
the short survival group of patients with brain metastasis is
required to maximize the benefit of the treatment and min-
imize the suffering of patients. Given the abovementioned
properties inherent in lung cancer patients with brain metas-
tases with extremely short survivability, current prognostic
models failed to identify patients who will not gain any major
benefit from WBRT. The goal of this study is to develop a more
reliable survival prediction model.

Traditional statistical models for survivability prediction
have rigid assumptions in which the variables are indepen-
dent [12,13] and difficult to use in calculating for posterior
probabilities. By contrast, Bayesian network (BN) is a powerful
tool for representing probabilistic events in a simple graph-
ically readable manner and for efficiently predicting tasks.
BN can be viewed as a knowledge-representation method
with an explicit structure and an associated semantic and
reasoning method [14]. Each node can be computed for the
posterior probability, which is useful for decision makers.
BN can approximate complex multivariate probability dis-
tributions of heterogeneous variables as interpretable local
probabilities to incorporate prior clinical and biological knowl-
edge as well as to visualize and interpret interactions among
variables of interest for clinical use [15]. In addition, BN
can be applied in both linear and nonlinear relation prob-
lems, including interaction problems, such as a parent-child
relationship.

The remainder of this paper is organized as follows: in Sec-
tion 2, we briefly review the BN along with other standard
machine learning methods; in addition, a technique to solve
imbalanced problem is stated in this section as well. Variables
and data, including model evaluation criteria, are described
in Section 3. The experiments and results are presented in
Section 4. We provide the conclusions in Section 5.

2. Methods
2.1.  Bayesian network

The BN is a probability graphical model that has capability to
encode a joint probability distribution over a set of random
variables that is either discrete or continuous. Officially, a BN
builds a directed-acyclic graph (DAG) by using a set of nodes
representing the variables and a set of directed edges rep-
resenting the relationships between the variables [15]. Given
X={Xq, ..., Xn} as the set of random variables, each variable
X; is independent of its non-descendants given its parents in
the graph. The joint probability distribution over X is given by

P(X1. ..., Xn) = [ ]I, P(Xi|Pa(Xy)), where Pq(X;) is the set of par-
ents of X;.

There are three important steps for the BN construction
[12,16]. (i) Identify the set of correlated variables and their
possible values, as well as details for variable identification.
(ii) Find the network structure by linking nodes that represent
variables with arcs with DAG, and constructing the graph using
expert knowledge or by applying the algorithm obtained from
the data. (iii) Define the conditional probability table (CPT) for
each node in the graph.

In this study, the network structure was rigorously exam-
ined by domain experts/doctors and constructed using data
from related medical literature. After the structure of a BN was
known, we quantified the relationship between connected
nodes by CPT for discrete variables. We used the Maximum
a Posteriori (MAP) estimation method to obtain the values for
CPT.

2.1.1. Parameter learning

Given that p represents a set of random variables {X1, Xo, ...,
Xn} where Xj is an element of the BN variables, 6 represents
a set of probability distribution parameter best explain D. The
purpose of parameter learning is to find the most probable
values for vector 6. The maximum a posterior estimate for the
parameter set 6 denoted by fyap = argmaxgP(6|D).

From the Bayes’ rule, the posterior distribution over 6:

P(DI6)P(6)

PED) = 5

where P(D|#) represents the likelihood function L(6:D), P(9)
represents the prior over parameters, and P(D) represents a
normalizing factor.

The MAP estimation for a binary variable can be explained
as follows. Assume D is the set of i.i.d samples D={Xq, ..., Xn},
Xj is a discrete binary variable with real values 0 and 1(X; has
Bernoulli distribution), then P(D|6) =6, P(X; =6). Thus, L(9:D) rep-
resenting the likelihood function for Bernoulli distribution has
the form: P(D|6) = L(6 : D) = [, 6%(1 — )" ) = gN1(1 — g)"2.

A conjugate prior for a binomial is Beta distribution, then
P(O)=y6*17 (1 —6)271, y=T (a1 +02)/ (1) (a2), where I'() is
the Gamma function. For any integer x, I'(x+ 1) =xI'(x), I'(1) =1,
rx=x-1»=.

From Bayes’ rule in Eq. (1),
60(171(1 _ 6)0(271 x 6a1+N171(1 _ 9)a2+N271.
(01 + N1 —1)/(e1 + @2 + N1 + Ny — 2).

The MAP estimation for a multinomial variable can be
extended as follows. Assume D is a multinomial experiment
consisted of n trials,i.e. D={Xj, ..., Xn} where X; has k possible
outcomes; for X;, the k outcomes can occur with the probabil-
ity 61, ..., 6, when Z}er = 1. Given n; represents number of the
jth outcome, then

P(6|D) oc N1 (1 — )Nz .

Therefore,  Oyap =

n!
——gMmph2...0% where n=n
nk' 172 k 1

P(nq, ..
(1 ny!--

) =

i

Therefore L(9:D) representing the multinomial likelihood
function has the form:

P(D|¢) = L(¢: D) = erjﬂj.
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