Contents lists available at ScienceDirect

Computers and Mathematics with Applications

Which wheel graphs are determined by their Laplacian spectra?

Yuanping Zhang^{a,*}, Xiaogang Liu^b, Xuerong Yong^c

^a School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, Gansu, PR China

^b Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China

^c Department of Mathematics, University of Puerto Rico at Mayaguez, P.O. Box 9018, PR 00681, USA

ARTICLE INFO

Article history: Received 12 December 2006 Received in revised form 28 April 2009 Accepted 8 July 2009

Keywords: Laplacian spectrum Cospectral graphs Eigenvalues Wheel graph

1. Introduction

ABSTRACT

The wheel graph, denoted by W_{n+1} , is the graph obtained from the circuit C_n with n vertices by adding a new vertex and joining it to every vertex of C_n . In this paper, the wheel graph W_{n+1} , except for W_7 , is proved to be determined by its Laplacian spectrum, and a graph cospectral with the wheel graph W_7 is given.

© 2009 Elsevier Ltd. All rights reserved.

ELECTRON

Let G = (V(G), E(G)) be a graph with vertex set $V(G) = \{v_1, v_2, ..., v_n\}$ and edge set E(G). All graphs considered here are simple and undirected. Let matrix A(G) be the (0,1)-adjacency matrix of G and d_k the degree of the vertex v_k . The matrix L(G) = D(G) - A(G) is called the *Laplacian matrix* of G, where D(G) is the $n \times n$ diagonal matrix with $\{d_1, d_2, ..., d_n\}$ as diagonal entries (and all other entries 0). The polynomial $P_{L(G)}(\mu) = \det(\mu I - L(G))$, where I is the identity matrix, is called the *Laplacian characteristic polynomial* of G, which can be written as $P_{L(G)}(\mu) = q_0\mu^n + q_1\mu^{n-1} + \cdots + q_n$. Since the matrix L(G) is real and symmetric, its eigenvalues, i.e., all roots of $P_{L(G)}(\mu)$, are real numbers, and are called the Laplacian eigenvalues of G. Assume that $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n (= 0)$ are these eigenvalues; they compose the *Laplacian spectrum* of G. Two non-isomorphic graphs are said to be *cospectral* with respect to the Laplacian spectrum if they share the same Laplacian spectrum [1]. In the following, we call two graphs *cospectral* if they are cospectral with respect to the Laplacian spectrum.

Take two disjoint graphs G_1 and G_2 . A graph G is called the *disjoint union* (or *sum*) of G_1 and G_2 , denoted as $G = G_1 + G_2$, if $V(G) = V(G_1) \bigcup V(G_2)$ and $E(G) = E(G_1) \bigcup E(G_2)$. Similarly, the *product* $G_1 \times G_2$ denotes the graph obtained from $G_1 + G_2$ by adding all the edges (a, b) with $a \in V(G_1)$ and $b \in V(G_2)$. In particular, if G_2 consists of a single vertex b, we write $G_1 + b$ and $G_1 \times b$ instead of $G_1 + G_2$ and $G_1 \times G_2$, respectively. In these cases, b is called an *isolated vertex* and a *universal vertex*, respectively. A *subgraph* [1] of graph G is constructed by taking a subset S of E(G) together with all vertices incident in G with some edge belonging to S. Clearly, the product graph $G_1 \times G_2$ has a complete bipartite subgraph $K_{m,n}$, where m and n are the order of G_1 and G_2 , respectively.

Which graphs are determined by their spectra seems to be a difficult problem in the theory of graph spectra. Up to now, many graphs have been proved to be determined by their spectra [2–8]. In [3], the so-called *multi-fan graph* is constructed and proved to be determined by its Laplacian spectrum. Then, take the definition of the so-called *multi-wheel graph*: The multi-wheel graph is the graph ($C_{n_1} + C_{n_2} + \cdots + C_{n_k}$) × b, where $C_{n_1} + C_{n_2} + \cdots + C_{n_k}$ is the disjoint union of circuits C_{n_i} , and $k \ge 1$ and $n_i \ge 3$ for $i = 1, 2, \ldots, k$. Note that the particular case of k = 1 in the definition is just the wheel graph

* Corresponding author. E-mail addresses: ypzhang@lut.cn (Y. Zhang), liuxg@ust.hk (X. Liu), xryong@math.uprm.edu (X. Yong).

^{0898-1221/\$ –} see front matter s 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2009.07.028

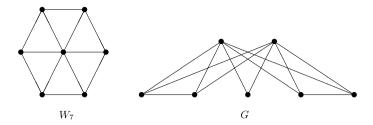


Fig. 1. The cospectral graphs W_7 and G.

 $W_{n_1+1} = C_{n_1} \times b$ with $n_1 + 1$ vertices. In this paper, the wheel graph W_{n+1} , except for W_7 , will be proved to be determined by its Laplacian spectrum. This method is also useful in proving that the multi-wheel graph $(C_{n_1} + C_{n_2} + \cdots + C_{n_k}) \times b$ is determined by its Laplacian spectrum, where $k \ge 2$. Here, we will skip the details of the proof for multi-wheel graphs. In [9], a new method (see Proposition 4 in [9]) is pointed out, which can be used to prove that every multi-wheel graph $(C_{n_1} + C_{n_2} + \cdots + C_{n_k}) \times b$ is determined by its Laplacian spectrum, where $k \ge 2$. But, for the wheel graph W_{n+1} , the new method in [9] is useless.

2. Preliminaries

Some previously established results about the spectrum are summarized in this section. They will play an important role throughout the paper.

Lemma 2.1 ([10]). Let G_1 and G_2 be graphs on disjoint sets of r and s vertices, respectively. If $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_r (= 0)$ and $\eta_1 \ge \eta_2 \ge \cdots \ge \eta_s (= 0)$ are the Laplacian spectra of graphs G_1 and G_2 , respectively, then r + s; $\mu_1 + s$, $\mu_2 + s$, \ldots , $\mu_{r-1} + s$; $\eta_1 + r$, $\eta_2 + r$, \ldots , $\eta_{s-1} + r$; and 0 are the Laplacian spectra of graph $G_1 \times G_2$.

Lemma 2.2 ([11]).

(1) Let *G* be a graph with *n* vertices and *m* edges and $d_1 \ge d_2 \ge \cdots \ge d_n$ its non-increasing degree sequence. Then some of the coefficients in $P_{L(G)}(\mu)$ are

$$q_0 = 1;$$
 $q_1 = -2m;$ $q_2 = 2m^2 - m - \frac{1}{2}\sum_{i=1}^n d_i^2;$

 $q_{n-1} = (-1)^{n-1} nS(G); \quad q_n = 0$

where S(G) is the number of spanning trees in G.

(2) For the Laplacian matrix of a graph, the number of components is determined from its spectrum.

Lemma 2.3 ([12]). Let graph G be a connected graph with $n \ge 3$ vertices. Then $d_2 \le \mu_2$.

Lemma 2.4 ([13,11]). Let *G* be a graph with $n \ge 2$ vertices. Then $d_1 + 1 \le \mu_1 \le d_1 + d_2$.

Lemma 2.5 ([14]). If *G* is a simple graph with *n* vertices, then $m_G(n) \le \lfloor \frac{d_n}{n-d_1} \rfloor$, where $m_G(n)$ is the multiplicity of the eigenvalue *n* of *L*(*G*) and |x| the greatest integer less than or equal to *x*.

Lemma 2.6 ([15]). Let \overline{G} be the complement of a graph G. Let $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n = 0$ and $\overline{\mu}_1 \ge \overline{\mu}_2 \ge \cdots \ge \overline{\mu}_n = 0$ be the Laplacian spectra of graphs G and \overline{G} , respectively. Then $\mu_i + \overline{\mu}_{n-i} = n$ for any $i \in \{1, 2, \dots, n-1\}$.

Lemma 2.7 ([16]). Let G be a connected graph on n vertices. Then n is an eigenvalue of Laplacian matrix L(G) if and only if G is the product of two graphs.

3. Main results

First, let us check that the graphs G and W_7 in Fig. 1 are cospectral. By using Maple, the Laplacian characteristic polynomials of the graphs G and W_7 are both

 $\mu^7 - 24\mu^6 + 231\mu^5 - 1140\mu^4 + 3036\mu^3 - 4128\mu^2 + 2240\mu.$

That is, G and W_7 are cospectral. Then, we will have the following proposition.

Proposition 3.1. The wheel graph W_7 is not determined by its Laplacian spectrum.

Theorem 3.2. The wheel graph W_{n+1} , except for W_7 , is determined by its Laplacian spectrum.

Download English Version:

https://daneshyari.com/en/article/469503

Download Persian Version:

https://daneshyari.com/article/469503

Daneshyari.com