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a b s t r a c t

The main purpose of this article is considering whether or not the feedback controls have
an influence on a non-autonomous predator–prey Lotka–Volterra type system. General
criteria on permanence are established, which is described by an integral form and
independent of some feedback controls. By constructing suitable Lyapunov functionals, a
set of easily verifiable sufficient conditions are derived for the global stability of anypositive
solution to the model.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional two species autonomous or non-autonomous predator–prey Lotka–Volterra systems take the form
dx1(t)
dt
= x1(t)

[
b1(t)− a11(t)x1(t)− a12(t)x2(t)

]
,

dx2(t)
dt
= x2(t)

[
−b2(t)+ a21(t)x1(t)− a22(t)x2(t)

]
,

(1.1)

where x1(t) is the prey population density and x2(t) is the predator population density, b1(t), a11(t), the intrinsic growth rate
and density-dependent coefficient of the prey, respectively; b2(t), a22(t), the intrinsic growth rate and density-dependent
coefficient of the predator, respectively; a12(t) the capturing rate of the predator and a21(t) the rate of conversion of
nutrients into the reproduction of the predator.
In the last decades, system (1.1) has been studied extensively, for example [1–9] and the references therein. Some

sufficient conditions are obtained for the permanence, existence and uniqueness, and asymptotic stability of periodic
solution for system (1.1).
However,wenote that ecosystems in the realworld are continuously distributed byunpredictable forceswhich can result

in changes in the biological parameters such as survival rates. In ecology, we know that the practical question of interest
is just whether or not an ecosystem can withstand those unpredictable disturbances which persist for a finite period of
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time. In the language of control variables, we call the disturbance functions control variables. Whereas, the control variables
discussed in much of the literature are constants or time dependent [10–12].
Recently, many scholars have done works on the ecosystem with feedback controls (see [13–20] and the references

cited therein). In particular, Gopalsamy and Weng [21] discussed the asymptotic behavior of solutions in Logistic systems
with feedback controls, Weng [22] considered a class of periodic integro-differential systems with feedback controls,
Xiao [23] considered a two species competitive system with feedback controls, Chen [24] considered a non-autonomous
Lotka–Volterra competitive system with feedback controls. These motivate us to consider the following non-autonomous
predator–prey Lotka–Volterra system with feedback controls

dx1(t)
dt
= x1(t)

[
b1(t)− a11(t)x1(t)− a12(t)x2(t)+ c1(t)u1(t)

]
dx2(t)
dt
= x2(t)

[
−b2(t)+ a21(t)x1(t)− a22(t)x2(t)− c2(t)u2(t)

]
du1(t)
dt
= f1(t)− e1(t)u1(t)− d1(t)x1(t)

du2(t)
dt
= −e2(t)u2(t)+ d2(t)x2(t).

(1.2)

In this paper, we study whether or not the feedback controls have an influence on the permanence of a positive
solution of the general non-autonomous predator–prey Lotka–Volterra type systems, and establish the general criteria on
the permanence of system (1.2), which is independent of some feedback controls. In additional, by constructing a suitable
Lyapunov function, some sufficient conditions are obtained for the global stability of any positive solution to system (1.2).
This paper is organized as follows. In the next section, two useful lemmas, several basic assumptions for system (1.2) and

the definitions of permanence are presented. We state and prove the sufficient conditions on the ultimately bounded and
permanence of positive solutions for system (1.2), which is described by integrable form and independent of some feedback
controls in Section 3. In the last section, a set of easily verifiable sufficient conditions are derived for the global stability of
any positive solution of system (1.2).

2. Preliminaries

Let R+ = (0,∞) and R+0 = [0,∞). In this section, we consider the following first order linear differential equations
with a parameter

dv(t)
dt
= g(t, β)− d(t)v(t), (2.1)

where g(t, β) is a continuous function defined on (t, β) ∈ R+0 × [0, β0] and β0 is a constant, d(t) is a continuous function
defined on R+0. For system (2.1) we introduce the following assumptions.

(A1) Function g(t, β) is a non-negative bounded on R+0 × [0, β0] and satisfies the Lipschitz condition with β ∈ [0, β0],
i.e., there is a constant L = L(β0) > 0 such that |g(t, β1)− g(t, β2)| ≤ L |β1 − β2| for all t ∈ R, β1, β2 ∈ [0, β0].

(A2) Function d(t) is non-negative bounded on R+0 and there is a constant ω1 > 0 such that lim inft→∞
∫ t+ω1
t d(s) ds > 0.

From assumptions (A1) and (A2), it is easy to proved that for any (t0, v0) ∈ R+0 × R+ and β ∈ [0, β0], system (2.1) has a
unique solution vβ(t) satisfying vβ(t0) = v0.
In system (2.1), when parameter β = 0 we obtain the following system

dv(t)
dt
= g(t, 0)− d(t)v(t). (2.2)

Let v∗β(t) be a fixed solution of system (2.1) defined on R+0. We say that v
∗

β(t) is globally uniformly attractive on R+0, if for
any constants η > 1 and ε > 0 there is a constant T = T (η, ε) > 0 such that for t0 ∈ R+0 and any solution vβ(t) of system
(2.1) with vβ(t0) ∈ [η−1, η], one has |vβ(t)− v∗β(t)| < ε for all t ≥ t0 + T . By Lemma 4 given in [1], we have

Lemma 2.1. Suppose that assumptions (A1) and (A2) hold. Then,
(a) there is a constant M > 0 such that lim supt→∞ vβ(t) ≤ M for any positive solution vβ(t) of system (2.1).
(b) each fixed solution u∗β(t) of system (2.1) is globally uniformly attractive on R+0.
(c) if there is a constant ω2 > 0 such that lim inft→∞

∫ t+ω2
t g(s, β) ds > 0 for all β ∈ [0, β0], then there is a constant η > 1

such that η−1 ≤ lim inft→∞ vβ(t) ≤ lim supt→∞ vβ(t) ≤ η for any solution vβ(t) of system (2.1).

Let v0 ∈ R+, t0 ∈ R+0 and β ∈ [0, β0], and vβ(t), v0(t) be the solutions of systems (2.1) and (2.2) with initial values
vβ(t0) = v0 and v0(t0) = u0, respectively. We can get the following result.

Lemma 2.2. Suppose that assumptions (A1) and (A2) hold, then vβ(t) converges to v0(t) uniformly for t ∈ [t0,∞) as β → 0.
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