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a b s t r a c t

For the past decades, gas hydrate reservoirs have beneficiated from an increasing attention in the
academic and industrial worlds. As a result, there is a growing need to develop specific and compre-
hensive gas hydrate reservoir characterization methods. This study explores the use of a stochastic
Bayesian algorithm to integrate well-logs and 3D acoustic impedance in order to estimate gas hydrate
grades (product of saturation and total porosity) over a representative volume of the Mallik gas hydrate
field, located in the Mackenzie Delta, Northwest Territories of Canada. First, collocated log data from
boreholes Mallik 5L-38 and 2L-38 are used to estimate the statistical relationship between acoustic
impedance and gas hydrate grades. Second, conventional stochastic Bayesian simulation is applied to
generate multiple gas hydrate grade 3D fields integrating log data and lateral variability of 3D acoustic
impedance. These equiprobable scenarios permit to quantify the uncertainty over the estimation, and
identify zones where this uncertainty is greater. Contrary to conventional stochastic reservoir modeling
workflows, the proposed method allows integrating non Gaussian and non linear distributions. This
permits to handle bimodal distributions without using complex stochastic transforms. The results
present gas hydrate grade values that are in accordance with well-log data. The relatively low standard
deviation calculated at each pixel using all realizations suggests that gas hydrate grades is well explained
by acoustic impedance and log data.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Gas hydrates occurring in permafrost regions are known to
represent a large volume of the global natural gas resources (Expert
panel on gas hydrates, 2008). However, actual gas hydrate volume
estimates vary over many orders of magnitude reflecting the
numerous assumptions and the lack of reliable volume calculation
methods, at the global or at the site scale (Collett, 2000). Reservoir
characterization in terms of the spatial distribution of gas hydrate
(GH) saturation and porosity is a key step prior to any exploitation
project. Conventional investigation tools used to infer these prop-
erties include 3D seismic surveys that have a large spatial coverage
but low spatial resolution (mostly vertical) and downhole logging
data with high vertical resolution but poor lateral coverage (Le
Ravalec-Dupin, 2005). In addition to conventional reservoir char-
acterization obstacles, the multiple choice of petrophysical

relationships possibly linking large scale acoustic attributes to
small scale physical properties complexifies accurate gas hydrate
modeling (Helgerud et al., 1999; Dai et al., 2004).

It has been shown that gas hydrate saturation presents a strong
statistical relation with acoustic impedance (Lu and McMechan,
2002; Dai et al., 2004; Bellefleur et al., 2006). This relation,
observed on well data, motivates the use of 3D acoustic impedance
inversion of seismic data as well as log data, to estimate gas hydrate
grades (product of saturation and porosity) over a large area of the
Mallik gas field. Thus, we propose a simulation algorithm which
combines 3D acoustic impedance data with acoustic impedance log
and grade data estimated using porosity and gas hydrate saturation
(Takayama et al., 2005). Similar simulation approaches were first
applied by Doyen et al. (1996) and Gastaldi et al. (1998) to constrain
3D oil reservoir porosity models using 3D seismic and log data.
More recently, Grana and Della Rosa (2010) presented a probabi-
listic Bayesian approach combining in situ petrophysical relation-
ships with inverted 3D seismic acoustic attributes to estimate the
distribution of petrophysical parameters (effective porosity, clay
content, and water saturation) as well as litho-fluid classes.
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Statistical simulation approaches have the advantage of quantifying
and providing the spatial distribution of the uncertainty of the
estimates.

Previous works on Mallik gas hydrate field modeling were
presented by Bellefleur et al. (2006) and Riedel et al. (2009). They
showed that a strong relationship exists between gas hydrate
saturation and acoustic impedance. An important step in this
research is to consider gas hydrate as a mining resource, hence to
consider grades instead of saturation, as it is typically done in the
petroleum industry. The grades are defined as the product of
saturation and porosity but can calculated at the wells by the
subtraction of the NMR porosity to the total porosity, as described
later in this paper. Starting from this point, this study aims at
estimating the in-place volume of methane trap within hydrates
and to address the continuity of the high gas hydrate grades layers
observed at the wells with its uncertainty. In an exploitation point
of view, these results can play an important role in the decision
process of the future drilling locations.

2. Methodology

This study investigates the use of in situ well-log statistical
relationship between acoustic impedance and gas hydrate grades
through a non-linear Bayesian simulation algorithm to simulate the
gas hydrate grades (G) over the 3D seismic data from Mallik. The
available seismic data consists of a 3D acoustic impedance (AI) cube
inverted using conventional least-square algorithm (Bellefleur
et al., 2006). Time-to-depth conversion chart is built from a zero-
offset Vertical Seismic Profile (VSP) measured at borehole 2L-38
(Sakai, 1999) located in the center of the 3D seismic cube and
reaching the base of the gas hydrate stability zone. Multiple
properties were obtained from logging data from both wells
including bulk density, neutron porosity, NMR porosity, and P-wave
velocity (Collett et al., 1999, 2005). From these properties, fine scale
(w15 cm) 1D acoustic impedancewas calculated bymultiplying the
density and the velocity of P-wave whereas gas hydrate grades
were calculated by multiplying the gas hydrate saturation with the
total porosity.

Grades were preferred over standard gas hydrate saturation
since, in its natural form, gas hydrate occurs as a solid rather than
a fluid as it is typically in conventional reservoir (Gabitto and
Tsouris, 2010). Consequently, the characterization tools for gas
hydrate reservoirs are closer to those used in mining rather than
the ones used in oil and gas reservoir study. Moreover, the grades
are an additive variable. Therefore, upscaling and downscaling can
be done by simple averaging. Following this property, log data have
been re-sampled at the coarse seismic scale (2 m) using sliding
window arithmetic mean.

2.1. Gas hydrate grades calculation

The two log parameters included in the present BSS algorithm
are acoustic impedance and gas hydrate grades. Acoustic imped-
ance is calculated by multiplying the bulk density and P-wave
velocity.

The bulk density of gas hydrate bearing sediments (rb) can be
expressed by (Lee and Collett, 2011)

rb ¼ rmað1� fÞ þ rwfð1� ChÞ þ rhfCh (1)

where f is the total porosity and rma, rw and rh are the densities of
grains, water, and gas hydrate, respectively. Ch is the gas hydrate
saturation filling the pore space.

In addition, NMR well-logging tools respond quantitatively to
pore-space liquidwater (bound, capillary, and freewater) but not to

gas (Kleinberg et al., 2005). Thus, the NMR porosity (fNMR) can be
written as

fNMR ¼ fð1� ChÞ (2)

From equations (1) and (2), the total porosity, which corre-
sponds to the pore space occupied by water and gas hydrate, is

f ¼ fD þ lhfNMR
1þ lh

(3)

where

lh ¼ rw � rh
rma � rw

and fD ¼ rma � rb
rma � rw

(4)

From equations (2) and (3), the gas hydrate saturation and
grades can be expressed as

Ch ¼ f� fNMR
f

(5)

G ¼ f� Ch ¼ f� fNMR (6)

Gas hydrate grades, estimated from NMR and density logs are
considered as the most accurate since it only depends on the accu-
racy of the NMR tool as well as the density log and not on amodel or
parameters (Takayama et al., 2005; Lee and Collett, 2011).

2.2. Kernel estimation

The first step of our methodology consists in inferring the
statistical petrophysical relationship between G and AI using
collocated log data. The joint probability function was then esti-
mated using the non-parametric kernel density estimator (KDE)
(Rosenblatt, 1956; Parzen, 1962). The joint probability function
f(G,AI) for n collocated data points (Gi,AIi) and for i ¼ 1,.,n the KDE
is expressed by Wand and Jones (1995).

f ðG;AIÞ ¼ 1
nh1h2

Xn
i¼1

K
�
G� Gi

h1

�
K
�
AI� AIi

h2

�
(7)

where h1 and h2 are the kernel bandwidths and K is the kernel
function. Among all possible kernel types (uniform, triangle,
Epanechnikof,.), we selected a Gaussian kernel as it is routinely
used for continuous variables (Silverman, 1986).

The determination of the optimal bandwidth is not straight-
forward; too much smoothing decreases the resolution of the
relationship between variables whereas not enough smoothing
leads to an unstable relationship. Many empirical equations exist to
help making this choice (Silverman, 1986). However, since the
relationship includes only two variables, a visual bandwidth
determination is preferred.

2.3. Bayesian sequential simulation

This section presents the BSS algorithm as illustrated on
Figure 1. This algorithm comprises five steps and allows the inte-
gration of the seismic attributes with the in situ petrophysical
relationship in a stochastic and flexible manner. The first step
consists in defining a random path visiting each cell of the 3D grid
once. All the subsequent steps presented below aim at simulating
the gas hydrate grades of voxel n.

The second step defines the a priori distribution of the gas
hydrate grades. This is done in two sub-steps (Fig.1, Steps 2.1 & 2.2).
Since the gas hydrate grades and acoustic impedance present a bi-
modal distribution, it is necessary to statistically infer a family for
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