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a b s t r a c t

In this paper, we obtain some sufficient conditions for determining the asymptotic stability
of discrete-time non-autonomous delayed Hopfield neural networks by utilizing the
Lyapunov functional method. An example is given to show the validity of the results.
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1. Introduction

The stability of continuous-time delayed Hopfield neural networks has received much attention due to its importance
in many applications such as associative memories, pattern recognition, image processing, optimization problems. So far,
many researchers have investigated the global asymptotic stability and/or global exponential stability of continuous-time
delayed Hopfield neural networks and obtained various results, for example, see [1–7]. In conducting numerical simulation
of continuous-time neural networks, it is necessary to formulate a discrete-time version which is an analogue of the
continuous-time neural networks. Hence, stability for discrete-time delayed Hopfield neural networks has also received
considerable attention from many researchers, see [8–13]. However, all the results are concerned with the autonomous
neural network models and to the best of our knowledge, few results for the non-autonomous models have been obtained.
In this paper, by making use of the construction of a suitable Lyapunov functional, several stability criteria are provided
for asymptotic stability of discrete-time non-autonomous delayed Hopfield neural networks. An example is presented to
illustrated the efficiency of the results.

2. Stability analysis

The dynamic behavior of discrete-time non-autonomous delayed Hopfield neural networks can be described as follows

yi(n+ 1) = ai(n)yi(n)+
m∑
j=1

bij(n)gj(yj(n− κ)) (2.1)

for i ∈ {1, 2, . . . ,m}, n ∈ {0, 1, 2, . . .}, where m corresponds to the number of units in a neural network; x(n) =
[x1(n), . . . , xm(n)]T ∈ Rm corresponds to the state vector; f (x(n)) = [f1(x1(n)), . . . , fm(xm(n))]T ∈ Rm denotes the activation
function of the neurons; f (x(n − κ)) = [f1(x1(n − κ)), . . . , fm(xm(n − κ))]T ∈ Rm; A(n) = diag(ai(n)) (ai(n) ∈ (0, 1))
represents the rate with which the ith unit will reset its potential to the resting state in isolation when disconnected from
the network and external inputs. B(n) = {bij(n)} represents the delayed feedbackmatrix, κ is a positive integer and denotes
the transmission delay along the axon of the jth unit.
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The initial conditions associated with system (2.1) are of the form

yi(l) = ϕi(l), i ∈ {1, 2, . . . ,m} (2.2)

where l is an integer with l ∈ [−κ, 0].
In this paper, we will assume that the activation functions gi, i = 1, 2, . . . ,m satisfy the following condition

|gi(ξ1)− gi(ξ2)| ≤ Li|ξ1 − ξ2|, ∀ξ1, ξ2 ∈ R.
gi(0) = 0. (2.3)

This type of activation function is clearly more general than both the usual sigmoid activation functions and the piecewise
linear function (PWL): gi(x) = 1

2 (|x+ 1| − |x− 1|)which is used in [14].
Throughout this paper, for symmetric matrices X and Y , the notation X > Y (X ≥ Y )means that matrix X − Y is positive

definite (positive semi-definite). Matrices, if not explicitly stated, are assumed to have compatible dimensions. For any real
matrix A, AT denotes the transpose of A. I denotes the identity matrix with appropriate dimension.
System (2.1) can be rewritten as

y(n+ 1) = A(n)y(n)+ B(n)g(y(n− κ)) (2.4)

where y(n) = (y1(n), y2(n), . . . , ym(n))T, A(n) = diag(a1(n), . . . , am(n)), B(n) =
(
bij(n)

)
m×m , g(y(n)) = (g1(y1(n)),

g2(y2(n)), . . . , gm(ym(n)))T.

Lemma 1. Let M(x) = MT(x), P(x) = PT(x) > 0 and Q (x) depend affinely on x. then[
Q (x) M(x)
MT(x) −P(x)

]
< 0

is equivalent to

Q (x)+M(x)P−1(x)MT(x) < 0.

Next, we will present a sufficient condition for ensuring asymptotic stability of Eq. (2.1).

Theorem 1. Eq. (2.1) is asymptotically stable if there exist two positive definite matrices P > 0 and Q > 0 such that

Ξ =

[
A(n)PA(n)− P + λmax(Q )L2 A(n)PB(n)

BT(n)PA(n) BT(n)PB(n)− Q

]
< 0 (2.5)

where L = diag(Li), λmax(Q ) denotes the largest eigenvalue of the positive definite matrix Q .

Proof. Consider the following function

V (n) = yT(n)Py(n)+
n−1∑
i=n−κ

gT(y(i))Qg(y(i)) (2.6)

then, we get

V (n+ 1) = yT(n+ 1)Py(n+ 1)+
n∑

i=n+1−κ

gT(y(i))Qg(y(i))

= [A(n)y(n)+ B(n)g(y(n− κ))]T P [A(n)y(n)+ B(n)g(y(n− κ))]

+

n−1∑
i=n+1−κ

gT(y(i))Qg(y(i))+ gT(y(n))Qg(y(n))

=
[
yT(n)A(n)P + gT(y(n− κ))BT(n)P

]
[A(n)y(n)+ B(n)g(y(n− κ))]

+

n−1∑
i=n+1−κ

gT(y(i))Qg(y(i))+ gT(y(n))Qg(y(n))

= yT(n)A(n)PA(n)y(n)+ 2yT(n)A(n)PB(n)g(y(n− κ))+ gT(y(n− κ))BT(n)PB(n)g(y(n− κ))

+

n−1∑
i=n+1−κ

gT(y(i))Qg(y(i))+ gT(y(n))Qg(y(n)).
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