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In this study, both the fuzzy weights of evidence (FWofE) and random forest (RF) methods were applied to map
themineral prospectivity for Cu polymetallicmineralization in southwestern Fujian Province, which is an impor-
tant Cu polymetallic belt in China. Recent studies have revealed that the Zijinshan porphyry–epithermal Cu de-
posit is associated with Jurassic to Cretaceous (Yanshanian) intermediate to felsic intrusions and faulting
tectonics. Evidence layers, which are key indicators of the formation of Zijinshan porphyry–epithermal Cu min-
eralization, include: (1) Jurassic to Cretaceous intermediate–felsic intrusions; (2) mineralization-related geo-
chemical anomalies; (3) faults; and (4) Jurassic to Cretaceous volcanic rocks. These layers were determined
using spatial analyses in support by GeoDAS and ArcGIS based on geological, geochemical, and geophysical
data. The results demonstrated that most of the known Cu occurrences are in areas linked to high probability
values. The target areas delineated by the FWofE occupy 10% of the study region and contain 60% of the total
number of known Cu occurrences. In comparison with FWofE, the resulting RF areas occupy 15% of the study
area, but contain 90% of the total number of known Cu occurrences. The normalized density value of 1.66 for
RF is higher than the 1.15 value for FWofE, indicating that RF performs better than FWofE. Receiver operating
characteristics (ROC) were used to validate the prospectivity model and check the effects of overfitting. The
area under the ROC curve (AUC) was greater than 0.5, indicating that both prospectivity maps are useful in Cu
polymetallic prospectivity mapping in southwestern Fujian Province.
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1. Introduction

The origin of mineral prospectivity modeling (MPM) can be traced
back to the works of mathematical geologists such as Harris (1965,
1969); Sinclair and Woodsworth (1970); Agterberg (1971, 1973,
1974), and Bonham-Carter (1994). Methods for GIS-based mineral
prospectivity analysis and predictive modeling have been developed
over the past 30 years. A number of mathematical methods and models
have been introduced for MPM in an attempt to provide objective tools
for the integration of multi-source data to narrow down target areas
for ground exploration at different scales. The integration functions
applied in MPM vary from simple arithmetic or logical operators to
complex mathematical functions. These methods can be generally
subdivided into knowledge- and data-driven categories, depending on
whether the function's parameters are estimated heuristically using the-
oretical or empirically based knowledge on the statistical spatial rela-
tionships between known deposits of the targeted type and predictor
maps. Knowledge-driven methods, such as fuzzy logic (An et al., 1991;

Ford et al., 2015), Boolean logic (Bonham-Carter and Cox, 1995; Carranza
et al., 1999), and evidential belief (An et al., 1994; Carranza et al., 2005;
Carranza, 2009), use expert opinions to assign the weights for each evi-
dence map. Data-driven approaches, such as weights of evidence
(WofE: Bonham-Carter et al., 1990; Liu et al., 2014; Ford et al., 2015),
Bayesian network classifiers (Porwal et al., 2006), neural networks
(Singer andKouda, 1996; Brown et al., 2000; Oh and Lee, 2010), and sup-
port vector machine (Zuo and Carranza, 2011; Geranian et al., 2015) are
based on quantitative measures of spatial associations between known
mineral occurrences and multiple prospecting datasets
(Bonham-Carter, 1994; Carranza, 2011; Porwal and Carranza, 2015).
Knowledge-driven approaches are commonly applied in greenfields,
where no or very fewmineral occurrences have been discovered. In con-
trast, data-driven mineral prospectivity models are suitable for “brown-
fields” (moderately or well-explored regions)where the goal is to define
new exploration targets for mineral deposits of the desired type.

When using ordinaryWofE, evidencemaps should be converted into
binary or ternary form so that maps of different types can be compared
and integrated into a single index of favourability or probability
(Agterberg, 1989; Agterberg et al., 1990; Bonham-Carter et al., 1990).
Cheng and Agterberg (1999) proposed the fuzzy weights of evidence
(FWofE) method, an extension of the ordinary WofE method, to
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quantify spatial associations between evidence layers (or geological fac-
tors) and known mineral occurrences based on fuzzy sets and fuzzy
probabilities. The FWofEmethod integrates the prior probability ofmin-
eral occurrences with the conditional probability for each evidential
layer to obtain posterior probabilities of mineral occurrence. Instead of
separating evidence into binary or ternary forms, this method allows
objective or subjective definitions of fuzzymembership by relatively ob-
jective definitions of fuzzy or conditional probabilities. This effectively
minimizes the uncertainty caused by missing data and improves the
prediction accuracy, providing a powerful tool for measuring spatial
correlations between spatial features (Cheng and Agterberg, 1999;
Cheng and Zhang, 2002; Cheng et al., 2007).

The random forest (RF) method, which is a machine learning
method based on a decision tree classifier (Breiman et al., 1984), is
increasingly being applied to data-driven predictive mapping of
mineral prospectivity. It is an ensemble classification scheme that

uses a majority vote for class association based on the results of mul-
tiple decision trees (Cracknell and Reading, 2013). Reddy and
Bonham-Carter (1991) used a decision-tree method to map mineral
prospectivity for base-metal deposits in the Snow Lake area of Man-
itoba (Canada). Rodriguez-Galiano et al. (2014, 2015) applied the RF
method to map gold prospectivity in southern Spain. Carranza and
Laborte (2015a, 2015b, 2015c) tested the efficacy of an RF algorithm.
Harris et al. (2015) utilized the RF method to map prospectivity in
Canada's northern Melville Peninsula area. Furthermore, Zhang
et al. (2015) chose southwestern Fujian Province in China as a case
study area to compare the FWofE and RF methods for mapping min-
eral prospectivity for skarn-type Fe deposits. Mckay and Harris
(2015) applied the RF for mapping gold prospectivity in southern
Nunavut (Canada).

In this paper, both the FWofE andRFmethods are used tomapmineral
prospectivity for Cu polymetallic mineralization in southwest Fujian

Fig. 1. Simplified geological map of southwestern Fujian Province (compiled from China Geological Survey, 2011).
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