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The uncertainty in the recoverable tonnages and grades in amineral deposit is a key factor in thedecision-making
process of a mining project. Currently, the most prevalent approach to model the uncertainty in the spatial dis-
tribution ofmineral grades is to divide the deposit into domains based on geological interpretation and to predict
the gradeswithin each domain separately. This approach defines just one interpretation of the geological domain
layout anddoes not offer anymeasure of theuncertainty in theposition of thedomain boundaries and in themin-
eral grades. This uncertainty can be evaluated by use of geostatistical simulationmethods. The aim of this study is
to evaluate how the simulation of rock type domains and grades affects the resourcesmodel of Sungun porphyry
copper deposit, northwestern Iran. Specifically, threemain rock type domains (porphyry, skarn and late-injected
dykes) that control the copper grade distribution are simulated over the region of interest using the plurigaussian
model. The copper grades are then simulated in cascade, generating one grade realization for each rock type re-
alization. The simulated grades are finally compared to those obtained using traditional approaches against pro-
duction data.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Currently, the most common approach to model the uncertainty in
the spatial distribution of mineral grades in an ore deposit is to define
geological domains deterministically, then to predict or to simulate
the mineral grades within each domain conditionally to the data be-
longing to this domain. This approach consists in interpreting the geo-
logical domains, using experimental data of lithology, mineralogy and/
or alteration and geological knowledge of the deposit (Dowd, 1986;
Duke and Hanna, 2001; Sinclair and Blackwell, 2002; Rossi and
Deutsch, 2014). However, it suggests only one interpretation of the geo-
logical domains and fails at measuring the uncertainty in the spatial
configuration of these domains. By constructing multiple numerical
outcomes or realizations of the geological domains, geostatistical simu-
lation helps to improve the geological interpretation and tomeasure the
uncertainty in the position of the domain boundaries. This ability of
geostatistical simulation allows assessing, in a realistic way, the risk of
a mining project by considering the uncertainty in both the geological
interpretation and the grade distribution. Several methods can be
used to this end, including sequential indicator (Journel and Alabert,
1990; Journel and Gómez-Hernández, 1993; Deutsch, 2006), multiple-

point (Strebelle, 2002; Mariethoz and Caers, 2015), truncated Gaussian
(Matheron et al., 1987; Galli et al., 1994) and plurigaussian (Galli et al.,
1994; Le Loc'h et al., 1994; Armstrong et al., 2011) simulation. In partic-
ular, plurigaussian simulation has gained popularity and proved to be
versatile to reproduce complex configurations of geological domains
(Riquelme et al., 2008; Yunsel and Ersoy, 2013; Talebi et al., 2013,
2014; Rezaee et al., 2014; Madani and Emery, 2015).

The aim of this study is to investigate the impact of simulated
models instead of deterministic geological models for studying the
risk in the evaluation of mineral resources and ore reserves, through a
case study on the Sungun copper deposit, located in northwestern
Iran. This deposit has been identified both as a skarn and a porphyry-
type deposit. It is characterized by the presence of late-injected dykes
with variable density, size and geometry into the main intrusion mass
of the deposit. These dykes often do not have any mineralization and
consequently dilute the mill feed (Hezarkhani and Williams-Jones,
1998), while porphyry and skarn correspond to ore with different
grade distributions and structures. In this type of deposits, the risk due
to uncertainty of geological contacts is essential. First of all, the
plurigaussian model is applied to the three main rock types (porphyry,
skarn and late-injected dykes) in order to reproduce the spatial variabil-
ity of the rock type domains and to assess the uncertainty in the position
of their boundaries. One hundred realizations (outcomes) are generated
and, afterwards, each of these is used to further generate a copper grade
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realization constructed with the sequential Gaussian simulation
(Goovaerts, 1997). The realizations are then used to quantify uncertain-
ty in recoverable tonnage and grade. The results are compared against
traditional approaches and against production data.

2. Methodology

2.1. Principles of geostatistical simulation

An ore deposit can be characterized by one or more regionalized var-
iables, i.e., variables that are distributed in space and exhibit some conti-
nuity, such as the grades of elements of economic interest or of
contaminants, the rock type or the alteration intensity, to name a few ex-
amples. The exact values of these variables are known at a finite set of
sampling locations, but unknown elsewhere. In order to quantify the un-
certainty in the values at unsampled locations, one assumes that each re-
gionalized variable is a realization of a spatial random field, characterized
by its finite-dimensional distributions (Chilès and Delfiner, 2012). Once
the randomfieldmodel is specified, it is possible to drawdifferent realiza-
tions or outcomes of thisfield and to constrain these realizations to repro-
duce the known values at sampling locations (conditional simulation). A
variety of random field models and simulation algorithms have been de-
veloped in the past decades; the reader is referred to the textbooks by
Lantuéjoul (2002) or Chilès and Delfiner (2012) for an overview.

2.2. Sequential simulation of grades

Let us denote by z(x) the grade of an element of interest at a specific
location x in the deposit, and by D the domain in which the grade is stud-
ied. The regionalized variable {z(x): x ∈ D} is viewed as a realization of a
parent random field {Z(x): x ∈ D}. Commonly, this random field is
modeled as amonotonic transformation of a stationary standardGaussian
random field {Y(x): x ∈ D}, which implies that the grade data have to be
transformed into normally-distributed data prior to simulation and that,
after simulation, the realizations have to be back-transformed into grades,
a procedure known as anamorphosis (Chilès and Delfiner, 2012). A sta-
tionaryGaussian randomfield is characterized by itsmeanvalue, constant
over space, and by its auto-covariance function or its variogram.

The simulation of the Gaussian random field at a set of target loca-
tions can be performed through the following steps (Goovaerts, 1997;
Deutsch and Journel, 1998; Remy et al., 2009):

1. Obtain a representative histogram for the input data.

2. Transform the data into normal scores (anamorphosis).
3. Calculate the sample variogram of the normal scores data and fit a

variogram model.
4. Select a target location for which the value has not been yet

simulated.
5. Perform simple kriging at the target location, using the input nor-

mal scores data and the already simulated values. Obtain a predic-
tion and a variance of the prediction error.

6. Draw a random value from aGaussian distributionwithmean equal
to the simple kriging prediction and variance equal to the simple
kriging variance.

7. Incorporate the value drawn into the conditioning data set.
8. Repeat steps 4–7 until all the target locations are visited.
9. Back-transform the simulated Gaussian values into the original

grade scale.
10. Repeat steps 4–9 to generate another realization.

2.3. Plurigaussian simulation of geological domains

Let now z(x) denote the value of a geological domain (codified as,
say, an integer between 1 and n) at location x. In the plurigaussian
model, this value is interpreted as a realization of an integer random

field {I(x): x ∈ D} obtained by truncating one or several underlying
Gaussian random fields, according to a given truncation rule.

Specifically, consider a set of m stationary Gaussian random fields
{Yi(x): x ∈ D} with i=1…m, which can be viewed as the components
of a vector Gaussian random field {Y(x): x ∈D}. Also consider a partition
of Rm into n disjoint subdomains D1,…, Dn and define an integer random
field by.

∀x∈D, I(x)= i if and only if Y(x)∈Di. (1)

The geometry of the partition (D1,…, Dn) defines the so-called trun-
cation rule, which controls the spatial relationships between the geolog-
ical domains. Usually, the subdomains forming the partition are cuboids
of Rm (Emery, 2007; Armstrong et al., 2011). The specific values that de-
fine the boundaries of such cuboids are known as the truncation thresh-
olds and are related to the proportion of space covered by each
geological domain.

As an example, consider two independent Gaussian random fields
(Y1 and Y2) and the following truncation rule to define the domain at lo-
cation x:

I xð Þ ¼
1 if Y1 xð Þ b t1
2 if Y1 xð Þ ≥ t1 andY2 xð Þ b t2
3 if Y1 xð Þ ≥ t1 andY2 xð Þ ≥ t2

8<
: ð2Þ

where t1 and t2 are the threshold values. Geometrically, this truncation
rule can be represented by a two-dimensional flag, where each axis rep-
resents a Gaussian randomfield and the rectangular areas correspond to
the couples of Gaussian values associatedwith each domain (Fig. 1). The
choice of the truncation rule may be based on topological or chronolog-
ical relationships between geological domains. For instance, domain 1
may correspond to a younger domain that crosscuts the other two do-
mains (Madani and Emery, 2015). The values of thresholds t1 and t2 de-
termine the proportion of space covered by each domain. For example,
if they are equal to zero (median of the standard Gaussian distribution),
then the Gaussian random fields take values below the thresholds half
of the time and values above the thresholds half of the time, which
means that domain 1 will have a proportion of 0.5, while the propor-
tions of domains 2 and 3 will be 0.25.

To complete the specification of the model, one has to infer the cor-
relation structure of the vector Gaussian random field {Y(x): x ∈D}. This
is done in order to fit the correlation structure of the integer random
field {I(x): x ∈ D}, which is experimentally known from the available
data on the geological domains prevailing at the sampling locations
(Armstrong et al., 2011).

The steps for simulation are the following:

1. Define the truncation rule.
2. Define the truncation thresholds.
3. Define the correlation structure of the underlying Gaussian random

fields, via its impact on the indicator variograms of the integer field
I(x).

4. At the sampling locations, transform the integer data into Gaussian
data. This can be donewith an iterativemethod known asGibbs sam-
pler (Lantuéjoul, 2002).

5. Simulate the Gaussian random fields at the target locations, condi-
tionally to their values at the sampling locations. This can be done
with the sequential algorithm described in the previous section.

6. Truncate the simulated Gaussian random fields to obtain an integer
random field.

7. Repeat steps 4–6 to generate another realization.

2.4. Cascade simulation of geological domains and grades

The cascade approach consists in simulating first the layout of the
geological domains, then the mineral grades within each domain
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