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a b s t r a c t

A multilevel survival frailty model is presented for analyzing clustered and recurrent uri-

nary tract infections among elderly women residing in aged-care institutions. At the subject

level, serial dependence is expected between recurrent events recorded on the same individ-

ual. At the cluster level, correlations of observations within the same institution are present

due to the inherent residential environment and hierarchical setting. Two random compo-

nents are therefore incorporated explicitly within the survival frailty model to account for

the simultaneous heterogeneity and autoregressive structure. A Splus computer program is

developed for the estimation of fixed effect and variance component parameters.

© 2007 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Survival frailty models are commonly used to analyse survival
data in different health and biomedical settings, by assuming
gamma and log-normal distributions for the random effects
[1–3]. Alternatively, random effects Cox models can be defined
by specifying the first and second moments of the frailty dis-
tribution [4]. The advantage of applying log-normal frailty
model is its flexibility on the correlation structure for the
failure time data, while keeping the interpretation of regres-
sion coefficients meaningful. For example, in order to handle
time dependent correlated frailties, Yau and McGilchrist [5]
proposed a log-normal frailty model incorporating an autore-
gressive correlation structure for the frailty term.

Multilevel models [6] are also available for handling nested
survival data. A multilevel frailty model with two nested ran-
dom effects has been developed, in which the random effects
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follow a gamma distribution [7]. For log-normal frailty, similar
multilevel models [8] were considered following the gener-
alised linear mixed modelling approach [2]. Zhang and Steele
[9] proposed a semi-parametric multilevel survival model,
with a non-linear effect for the continuous covariate and a lin-
ear effect for categorical covariate in the log-hazard function.
Recently, Ha and Lee [10] used multilevel mixed linear models
to analyse censored survival data. An application of multilevel
frailty modelling of clustered grouped survival data can be
found in [11] where the MCMC method is used for parameter
estimation.

Our modelling of multilevel survival data is motivated by a
longitudinal study of recurrent urinary tract infections sus-
tained by a group of elderly women residing in aged-care
institutions. At the facility/cluster level, all subjects from the
same institution share a common random institution effect.
At the subject level, repeated measurements (recurrent times)
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from the same individual are expected to be correlated. An
autoregressive covariance structure is thus specified as part
of the variance component for the recurrent times.

2. Recurrent urinary tract infections

Urinary tract infection (UTI) is one of the most common bac-
terial infections in women, and one in four of these women
will develop a recurrence. Between 10% and 20% of women
aged 60 years and over are affected by asymptomatic infec-
tion or bacteriuria [12]. Various risk factors predispose women
of different age groups to recurrence [13]. The prevalence
of recurrent UTI also increases for women living in nursing
homes [14].

A retrospective cohort study was conducted in 2003 to
determine the risk factors associated with recurrent UTI
among elderly women in residential aged-care facilities [15].
Eligibility criteria for the subjects were defined to be female
residents aged 60 years or above with an institutionalisation
period of at least 6 months. A total of 201 subjects satisfy-
ing the selection criteria were recruited from six randomly
selected aged-care institutions in Perth, Western Australia.
Women residing in the same institution were likely to be cor-
related in terms of contracting UTI because of their exposure
to the same environment [15].

It was found that 93 of the 201 women experienced at least
one UTI episode during the 2 years follow-up period. For this
subgroup of women, the outcome variable was taken to be the
duration between successive UTI episodes. In addition to age
(in years), available covariates were binary variables indicating
the presence or absence of diabetes mellitus, stroke his-
tory, history of prior UTI, urinary incontinence, hysterectomy,
faecal incontinence, immuno-compromised, and anatomical
abnormalities of the urinary tract. Information on these vari-
ables was retrieved from records or medication charts held at
each institution. The variables were chosen because they are
either established or postulated risk factors for recurrent UTI
[13].

3. Multilevel survival frailty model with
autocorrelation

For the modelling of clustered recurrent times, let T denotes
the duration between successive recurrent events or the time
to end of study, with D being the associated indicator of event
(1) or censor (0). Suppose Tijk is the observed kth recurrent time
of the jth individual nested within the ith institution, with
k = 1, 2,. . ., nij, j = 1, 2, . . ., mi, i = 1, 2, . . ., b. Here, nij is the num-
ber of repeated observations on subject j; mi is the number
of subjects within institution i; and b is the number of ran-
domly selected institutions. There are altogether

∑b

i=1mi =
M subjects,

∑mi
j=1nij = ni observations within the ith institu-

tion, and
∑b

i=1ni = N observations in total. In this three-level
hierarchical setting, conditional on unobservable institution
random effect ui and subject frailties vijk, observations (Tijk,
Dijk) are assumed to be independent. Following the survival
frailty approach [2,5,8], the proportional hazard function may

be written as:

h(t; i, j, k) = �(t) exp(�ijk), �ijk = x′
ijkˇ + ui + vijk,

where �(t) is the underlying baseline hazard, x′
ijk

is a covariate
vector corresponding to tijk, and ˇ is the associated vec-
tor of regression coefficients. Let u = (u1, . . ., ub)′ and v =
(v111, v112, . . . , v211, v212, . . . , vb11, vb12, . . . )′. The linear predic-
tor can be expressed as:

� = Xˇ + Z1u + Z2v.

Without loss of generality, we assume u to be normally dis-
tributed, N(0, �2Ib), independent of v. To further account for the
time dependent correlated frailties, a first-order autoregres-
sive correlation structure is adopted for the subject random
effects [5,16], so that v follows a N(0, �A(�)) distribution, where
A = diag(A11, A12, . . . , Ab1, . . . , Abmb

) is a block diagonal matrix
with:

Aij(�) = 1
1 − �2

⎛
⎜⎜⎜⎜⎝

1 � · · · �nij−1

� 1 · · · �nij−2

...
...

. . .
...

�nij−1 �nij−2 · · · 1

⎞
⎟⎟⎟⎟⎠ .

The following expressions can be derived as:

A−1
ij

= (1 + �2)Iij − �Jij − �2Kij and trace

(
∂A−1

ij

∂�
Aij

)

= − 2�

1 − �2
,

where Iij, Jij and Kij are nij × nij matrices; Iij is the identity matrix;
Jij has its sub-diagonal entries ones and zeros elsewhere; Kij

takes on the value 1 at the first and last element of its principal
diagonal and zeros elsewhere. To simplify notation, I, J and K
represent the respective block diagonal matrix with element
Iij, Jij and Kij, respectively.

The best linear unbiased prediction (BLUP) log-likelihood is
the sum of two components l = l1 + l2, where l1 is the logarithm
of the partial likelihood of recurrent times conditional on u and
v, and l2 is the logarithm of the probability density function of
u and v, namely:

l2 = −1
2

(b log(2��2) + �−2u′u) − 1
2

(N log(2��)

+ log |A| + �−1v′A−1v).

From now onwards, we use i as the index of observations. By
sorting the recurrent event/censoring times Ti in ascending
order, we have �i = x′

i
ˇ + z′

1i
u + z′

2i
v, where x′

i
is the vector of

fixed covariates, while z′
1i

u and z′
2i

v return the value of u or v

for the ith observation. For the above log-normal frailty model
with u and v conditionally fixed:

l1 =
N∑

i=1

Di

⎡
⎣�i − log

N∑
j=i

exp(�j)

⎤
⎦ .

When the variance parameters �2, � and � are held fixed, the
estimates of ˇ, u and v are given by the Newton–Raphson
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