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There has recently been a rapid growth in the amount and quality of digital geological and geophysical data for
the majority of the Australian continent. Coupledwith an increase in computational power and the rising impor-
tance of computational methods, there are new possibilities for a large scale, low expenditure digital exploration
of mineral deposits. Here we use a multivariate analysis of geophysical datasets to develop a methodology that
utilises machine learning algorithms to build and train two-class classifiers for provincial-scale, greenfield min-
eral exploration. We use iron ore in Western Australia as a case study, and our selected classifier, a mixture of
a Gaussian classifier with reject option, successfully identifies 88% of iron ore locations, and 92% of non-iron
ore locations. Parameter optimisation allows the user to choose the suite of variables or parameters, such as
classifier and degree of dimensionality reduction, that provide the best classification result. We use randomised
hold-out to ensure the generalisation of our classifier, and test it against known ground-truth information to
demonstrate its ability to detect iron ore and non-iron ore locations. Our classification strategy is based on the
heterogeneous nature of the data, where a well-defined target “iron-ore” class is to be separated from a poorly
defined non-target class. We apply a classifierwith reject option to known data to create a discriminant function
that best separates sampled data, while simultaneously “protecting” against new unseen data by “closing” the
domain in feature space occupied by the target class. This shows a substantial 4% improvement in classification
performance. Our predictive confidence maps successfully identify known areas of iron ore deposits through
the Yilgarn Craton, an area that is not heavily sampled in training, as well as suggesting areas for further explo-
ration throughout the Yilgarn Craton. These areas tend to be more concentrated in the north and west of the
Yilgarn Craton, such as around the Twin Peaks mine (~27°S, 116°E) and a series of lineaments running east–
west at ~25°S. Within the Pilbara Craton, potential areas for further expansion occur throughout the Marble
Bar vicinity between the existing Spinifex Ridge and Abydos mines (21°S, 119–121°E), as well as small, isolated
areas north of the Hamersley Group at ~21.5°S, ~118°E. We also test the usefulness of radiometric data for
province-scale iron ore exploration, while our selected classifier makes no use of the radiometric data, we dem-
onstrate that there is no performance penalty from including redundant data and features, suggesting thatwhere
possible all potentially pertinent data should be included within a data-driven analysis. This methodology lends
itself to large scale, reconnaissance mineral explorations, and, through varying the datasets used and the com-
modity being targeted, predictive confidence maps for a wide range of minerals can be produced.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The viability of an ore deposit is governed not only by its geological
features, but also by economic factors such as global demand and
market value. Consequently, economic geology links together frontier
geological science with an economic framework; what defines an
economically viable ore deposit can alter over time as a consequence

of changes in the cost of exploration, extraction and production as
well as demand in the global market (Pohl, 2011). As ore deposits,
which are both easy to find and extract, are beingdepleted, there is a ris-
ing cost associated with finding new ore deposits using existing explo-
ration techniques. The increase in computational power and in the
availability of high-resolution data allows for new methodologies to
be developed for the purposes of data-driven mineral exploration, in
an effort to reduce exploration costs in finding large ore bodies.

The challenge in developing effective targeting aids that generalise
to new geographic locations is in developing methods and models
that exploit available data without over-fitting, and lend themselves
to continuous improvement as more/higher-quality data become
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available. Of particular importance is understanding the impact that fac-
tors such as data redundancy, correlation between datasets, sample-
sizes and data-dimensionality have on the effectiveness of the models
and outputs generated by their amalgamation. In this paper we have
used a multivariate analysis of geophysical databases to develop a
methodology that utilises machine learning algorithms (MLAs) to
build and train a classifier to predict the presence and absence of iron
ore deposits throughout Western Australia. Importantly, our classifier
is designed to be applied over large areas of land (on the order of
1000 km), as such, while generalising well for the exploration of iron
ore over multiple cratons and orogenies, it is not specifically adapted
for local geology and regional–local scale exploration. As such,we utilise
a training and evaluation methodology, which takes into account the
various aforementioned factors and attempts to make use of available
data in the most effective way.

As conceptual targeting of potential sites at a province/district to re-
gional scale is one of the largest challenges facing geoscience (Hronsky
and Groves, 2008) this methodology will assist with first order, large-
scale exploration. Mineral exploration consists of a number of successive
but interlinked stages, starting with planning and large-scale reconnais-
sance exploration, before moving towards smaller scale appraisals and
explorative drilling, and then finally assessment drilling and mine devel-
opment (Moon andWhateley, 2006; Pohl, 2011). Generally, as the stages
progress the associated economic risk decreases, but the expenditure re-
quired increases (i.e. more money is spent on stages that have a higher
confidence of success) (Moon and Whateley, 2006). The methodology
outlined in this paper is designed to fit in the early reconnaissance stage
ofmineral exploration, assisting and facilitating in the identification of po-
tential target locations for a commodity. The nature of this methodology
fits well in the explorationmethod, as it has a low expenditure. However,
unlike existing reconnaissance exploration, we believe that there is less
associated risk with this methodology. While formal mineral exploration
already consists of the analysis of geophysical data, our approach differs in
that weminimise human bias and use computational methods that allow
for the combination and analysis of large amounts of high-dimensional
data to create a prospectivity map of a target commodity. We argue that
studies in the past such as Groves et al. (2000) and Nykänen et al.
(2008) in which targeting “layers” are independently combined together
are suboptimal. They do not take into account that many geological/geo-
physical statistics are not independent, resulting in under-exploited data
separability (Brown et al., 2000; Porwal et al., 2003; Singer and Kouda,
1999). In this paper a multivariate approach is taken where we explicitly
attempt to deal with these issues, thus combining various data sources
into a single model that involves feature extraction and classification to
both cope with the dependence between variables, and make trade-offs
between the number of dimensions, available data and classifier
complexity.

2. Background geology

Though iron ore is one of the most economically important natural
commodities, there is still some uncertainty about its genesis. This is
due, in part, to an absence of modern analogues with respect to both
the process of formation (Bekker et al., 2010) and also the scale at
which the deposits form (Morris, 1985). Additionally, ambiguities
about Archean and Proterozoic geology, climatic conditions and seawa-
ter chemistry (e.g. Canfield, 2005; Lyons et al., 2009; Planavsky et al.,
2011) have also caused numerous mechanisms and ideas being pro-
posed over time for the source and transport paths of iron, the timing
of deposition of iron formations and the subsequent enrichment of
iron formation to iron ore. For instance, while it is generally accepted
that allmajor iron ore deposits occurred in anoceanic setting, the source
of the iron within the oceans was thought to originate from continental
erosion until, an alternative hydrothermal source was proposed (Isley,
1995).

Banded iron formations (BIF) are defined after James and Trendall
(1982) as a rock with thin laminations of chert alternating with iron
minerals, and can be broadly classified into two categories based on
their depositional environment, Algoma-type and Superior-type (Gross,
1980). Algoma-type deposits are found through Archean and Proterozoic
formations, and are associated with volcanic centres and exhalative sub-
marine processes, and typically contain some greywacke or volcanic
units (Gross, 1980). They are typically found within Archean greenstone
belts (Bekker et al., 2010; Goodwin, 1973; Isley and Abbott, 1999) and
are usually smaller, both in terms of tonnage of ore (largest deposits
around 107 Mt) and in spatial extent than Superior-type deposits.
Comparably, Superior-type deposits are more common in Protero-
zoic aged formations and are associated with a near-shore continental-
shelf depositional setting, usually found with carbonates, quartzite,
black shales, and small amounts of volcanogenic rocks (Gross, 1980).
The Superior-type tend to be larger, up to 1014Mt, and also occupy a larg-
er spatial extent (Bekker et al., 2010; Huston and Logan, 2004; Isley,
1995). Both types of iron formation are associated with oxide, silicate
and carbonate facies (Gross, 1980; James, 1954), while Algoma-types
may be associated with polymetallic sulphide facies if they occurred in
close proximity to a volcanic centre.

2.1. Geological setting

Australia is host to bothAlgoma- andSuperior-type deposits, though it
is predominantly known for its massive Superior-type deposits occurring
throughout the Hamersley Basin in the Pilbara Craton (Fig. 1). The Pilbara
Craton consists of a Paleo-Neoarchean core overlainwith a strong angular
unconformity by Neoarchean–Paleoproterozoic volcano-sedimentary se-
quences (Blake and Barley, 1992; van Kranendonk et al., 2002). The core
consists of a granite–greenstone terrane that outcrops towards the
north, collectively called the North Pilbara terrain (Fig. 2). The North
Pilbara terrain has been subdivided into three distinct granite–greenstone
terranes, the East Pilbara granite–greenstone terrane (3.72–2.85 Ga), the
West Pilbara granite–greenstone terrane (3.27–2.92Ga) and the Kurunna
terrane (3.3–3.2 Ga) towards the southeast of the craton, and two
intracratonic sedimentary basins, the Mallina Basin (3.01–2.94 Ga) and
the Mosquito Creek basin (~3.3–2.9 Ga) (van Kranendonk et al., 2002).
Smaller Algoma-type deposits occur in the Eastern Pilbara granite–green-
stone terrane amongst the Gorge Creek Group and Cleaverville Formation
(Huston and Logan, 2004). The volcano-sedimentary sequences, col-
lectively referred to as the Hamersley province, overlay the southern
part of the craton and are of principal interest to this study as they contain
some of the largest and richest iron ore deposits in theworld. The stratig-
raphy of the Hamersley province is divided into five key groups.
The lower three, the Fortescue Group (2770–2630 Ma), the iron rich
Hamersley Group (2630–2470 Ma) and the Turee Creek Group (2470–
ca.2350 Ma) all conformably overlay one another and comprise the Mt.
Bruce Supergroup (Taylor et al., 2001). The upper two groups, the
Lower and UpperWyloo Groups (2209–2150 Ma and 2000–1800 Ma re-
spectively), are separated from the Mt. Bruce Supergroup by a first order
regional unconformity (Taylor et al., 2001). The Fortescue Group is
characterised bymafic–clastic sedimentation,while the lower andmiddle
units of theHamersley Group are indicative of a deep-water environment
consisting of volcanoclastic sedimentary and some carbonate sedimenta-
ry units and the TureeCreekGroup consists of coarser, clastic sedimentary
rocks overlaying iron formation, suggesting a transition from a deep to
shallow sea environment (Blake and Barley, 1992; Simonson et al.,
1993). Ironore is foundextensively throughout theHamersleyGroup. De-
formation is more pronounced in the south of the Hamersley province
where the younger units outcrop, with the older basal units in the north
of the province only being gently folded (Taylor et al., 2001).

The Yilgarn Craton is a large, Archean aged section of crust within
Western Australia, to the south of the Pilbara Craton. Similar to the
Pilbara Craton, it is comprised predominantly of Mesoarchean low-
grademetamorphosed granite–greenstone belts, though it also contains
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