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The Random Forests (RF) algorithm has recently become a fledgling method for data-driven predictive mapping
ofmineral prospectivity, and so it is instructive to further study its efficacy in this particular field. This study, car-
ried out using Baguio gold district (Philippines), examines (a) the sensitivity of the RF algorithm to different sets
of deposit and non-deposit locations as training data and (b) the performance of RF modeling compared to
established methods for data-driven predictive mapping of mineral prospectivity. We found that RF modeling
with different training sets of deposit/non-deposit locations is stable and reproducible, and it accurately captures
the spatial relationships between the predictor variables and the training deposit/non-deposit locations. For
data-driven predictive mapping of epithermal Au prospectivity in the Baguio district, we found that (a) the
success-rates of RF modeling are superior to those of weights-of-evidence, evidential belief and logistic regres-
sion modeling and (b) the prediction-rate of RF modeling is superior to that of weights-of-evidence modeling
but approximately equal to those of evidential belief and logistic regression modeling. Therefore, the RF algo-
rithm is potentially much more useful than existing methods that are currently used for data-driven predictive
mapping of mineral prospectivity. However, further testing of the method in other areas is needed to fully ex-
plore its usefulness in data-driven predictive mapping of mineral prospectivity.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Predictive mapping of mineral prospectivity involves the analysis
and synthesis of various layers of spatial evidence derived from various
pertinent geoscience spatial data sets in order to outline and prioritize
areas that are prospective for exploration of undiscovered mineral
deposits of the type sought (Bonham-Carter, 1994; Carranza, 2009b).
Predictive mapping of mineral prospectivity can either be knowledge-
driven or data-driven. Knowledge-driven predictive mapping of miner-
al prospectivity is suitable in less-explored (or so-called ‘greenfields’)
geologically permissive regions where no or very few mineral deposits
are known to occur (e.g., Lusty et al., 2012). In knowledge-driven pre-
dictive mapping of mineral prospectivity, the weights assigned to
every layer of spatial evidence reflect one's ‘expert’ judgment of its spa-
tial association with mineral deposits of the type sought. In contrast,
data-driven predictive mapping of mineral prospectivity is suitable in
moderately- to well-explored (or so-called ‘brownfields’) geologically
permissive regions, where the objective is to demarcate new targets
for further exploration of undiscovered mineral deposits of the type

sought (e.g., Mejía-Herrera et al., 2014). In data-driven predictive map-
ping of mineral prospectivity, the weights assigned to individual layers
of spatial evidence are quantified spatial associations between discov-
ered mineral deposits and individual data sets used to represent
prospectivity recognition criteria.

Data-driven predictive mapping of mineral prospectivity makes use
of mathematical methods that involve either bivariate or multivariate
analysis. Bivariate techniques involve pair-wise analysis of spatial asso-
ciation between a map of mineral deposit occurrence and a map of
an evidential dataset. There are two bivariate techniques commonly
used for data-driven predictive mapping of mineral prospectivity:
(i) weights-of-evidence modeling (Agterberg, 2011; Agterberg et al.,
1990, 1993; Bonham-Carter et al., 1988, 1989); and (ii) evidential belief
modeling (Carranza, 2009a, 2011a, 2014; Carranza and Hale, 2003;
Carranza and Sadeghi, 2010; Carranza et al., 2005, 2008a,b,c, 2009). In
contrast, multivariate techniques involve simultaneous analysis of spa-
tial associations between a map of mineral deposit occurrence and
maps of various evidential datasets. The multivariate techniques com-
monly used for predictive mapping of mineral prospectivity include:
(i) logistic regression (Chung, 1978, 1983; Chung and Agterberg, 1980,
1988; Carranza and Hale, 2001; Harris et al., 2001, 2006); and (ii) artifi-
cial neural networks (Behnia, 2007; Harris et al., 2003; Nykänen, 2008;
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Porwal et al., 2003, 2004; Rigol-Sanchez et al., 2003; Singer and Kouda,
1996, 1999).

The number of multivariate techniques used for data-driven
predictive mapping of mineral prospectivity is greater than the number
of bivariate techniques used for the same purpose (Carranza, 2009b,
2011b). This indicates that, because of the highly complex, and probably
non-linear, nature of spatial associations between mineral deposits and
geological features, it is usually more desirable to develop and/or apply
multivariate rather than bivariate techniques for data-driven predictive
mapping of mineral prospectivity. Nevertheless, multivariate tech-
niques, like bivariate techniques, show a variety of problems that can
undermine the accuracy of predictive mapping of mineral prospectivity
in different cases. For example, logistic regression assumes that the
distribution of the data is known and follows a stochastic data model,
and that variables are independent. These assumptions rarely apply,
however, to data-driven predictive mapping of mineral prospectivity
whereby data distributions are usually not known a-priori and eviden-
tial data represent geological processes involved in mineral deposit
formation that are not independent of each other. Moreover, logistic
regression is quite sensitive to data outliers. On the other hand, artificial
neural networks, like other data-driven techniques, require a large
number of known locations of mineral deposits of the type sought for
quantifying spatial associations with multiple layers of evidential data.
More importantly, unlike the parameters (i.e., coefficients representing
degrees of spatial associations between mineral deposits and evidential
data) in bivariate techniques and other multivariate techniques such as
logistic regression, the parameters in artificial neural networks are not
interpretable in terms of relative importance of predictor maps. In
other words, artificial neural networks do not provide insights into the
inter-play of geologic controls on mineralization.

In the last two decades or so, various multivariate methods have
been developed in various fields to overcome some of the problems
discussed above. From the field of machine learning, ensemblemethods
like bagging (Breiman, 1996) and Random Forests (Breiman, 2001) are
increasingly being used in predictive mapping of areas of interest
according to certain ‘suitability’ criteria. For example, one of us has
recently applied Random Forests (RF) to predict areas suitable for rice
production (Laborte et al., 2012). The growing major application of RF
is land-cover classification (e.g., Gislason et al., 2006; Grimm et al.,
2008; Rodriguez-Galiano et al., 2012) and species distribution mapping
(e.g., Bradter et al., 2013; Evans and Cushman, 2009; Prasad et al., 2006).
Meanwhile, the application of RF to spatial data integration for geologi-
cal mapping is also growing (e.g., Cracknell and Reading, 2013, 2014;
Cracknell et al., 2013; Waske et al., 2009). Just recently, Rodriguez-
Galiano et al. (2014) have demonstrated the applicability of RF to
data-driven predictive mapping of mineral prospectivity for epithermal
Au deposits in the Rodalquilar district (Spain).

As the method of RF has now become a fledgling multivariate tech-
nique for data-driven predictive mapping of mineral prospectivity, var-
ious questions regarding its applicability as well as efficacy need to be
answered. Rodriguez-Galiano et al. (2014) have investigated the opti-
mum number of trees and optimum number of random variables need-
ed for proper training in RF modeling (see Section 2). Because training
in RF modeling requires both training samples for deposit and non-
deposit locations and because there can be an infinite number of sets
of non-deposit locations, we investigate in this paper the following
questions: (a) is RF modeling sensitive to different training sets of
non-deposit locations? and (b) is RF modeling better than weights-of-
evidence, logistic regression and evidential belief modeling in terms of
predictive ability to delineate prospective areas for mineral deposits of
the type sought? The latter three techniques have been applied by
Carranza (2002) and Carranza and Hale (2000, 2001, 2003) to predict
prospective areas for epithermal Au deposits in the Baguio gold district
(Philippines). Therefore, to answer the secondquestion,we also applied
the RF algorithm using the same datasets for predictive mapping of
prospectivity for epithermal Au in the same district.

2. RF algorithm

Random Forests are an ensemble of multiple decision trees, or a set
of hierarchically organized restrictions or conditions, which are succes-
sively applied from a root (parent) node to a terminal (or child) node or
leaf of a tree to make repeated predictions of the phenomenon repre-
sented by training data (Breiman, 1984, 2001). The decision trees can
be either classification trees or regression trees (RTs). Every decision
tree in RF employs a training subset that is randomly chosen as much
times with replacement as the number of trees in the ensemble. That
means every decision tree employs bootstrap aggregation, referred to
as bagging (Breiman, 1996), whereby roughly two-thirds of the training
samples are used to create a prediction (and referred to as bag samples)
while the remaining roughly one-third of the training samples are used
to validate the accuracy of the prediction (and referred to as out-of-bag
(OOB) samples). Meanwhile, for each node/split in a decision tree, a
random selection of the predictor variables (or predictors) is made.
The final prediction output of RF (in regression) is the average of the
prediction of all the regression trees.

To induce the decision trees, recursive splitting andmultiple classifi-
cations or regressions are carried out from the data set. From the root
(parent) node, the process of data splitting in every internal node of a
restriction or condition of the tree is repeated until a pre-specified
stop condition is achieved. Each of the terminal (child) nodes, or leaves,
has attached to it a simple regression model, which applies in that node
only. In other words, the RF algorithm starts by splitting the target var-
iable, or the parent node (root), into binary pieces, where the child
nodes are ‘purer’ than the parent node. Through this process, the deci-
sion trees search through all candidate splits to find the optimal split
that maximizes the ‘purity’ of the resulting tree. Whereas regression
trees can be pruned or grown until a specific condition is achieved, de-
cision trees in RF can be grown to maximum ‘purity’. The RF algorithm
uses the Gini impurity index (Breiman, 1984) to calculate the informa-
tion purity of child nodes compared to that of their parent node. Split
thresholds are determined from the maximum reduction in purity
(Breiman, 2001).

For data-driven predictive mapping of mineral prospectivity, based
on the training data of the target variable consisting of 1 s (representing
deposit locations) and 0 s (representing non-deposit locations), the RF
consists of multiple regression trees (Rodriguez-Galiano et al., 2014).
Therefore, the predictions are floating values ranging from 0 to 1
denoting likelihoods ofmineral deposit occurrence, which can be classi-
fied using a certain threshold value formapping of prospective and non-
prospective areas.

3. Application to test area: the Baguio gold district

3.1. Geology and epithermal Au mineralization

Five lithologic formations underlie the Baguio gold district (Fig. 1).
The oldest formation — Pugo Formation of Cretaceous to Eocene age —
comprises a sequence of metasedimentary and metavolcanic rocks. Un-
conformably overlying the Pugo Formation is the Zigzag Formation,
which, according to Balce et al. (1980) is made upmostly of marine sed-
imentary of Early toMiddleMiocene age. However, andesite porphyries,
which have been dated 15.0 ± 1.6 Ma (Wolfe, 1981) or pre-Middle
Miocene, have intruded into the Zigzag Formation. Therefore, Mitchell
and Leach (1991) consider the Zigzag Formation to be largely Late
Eocene although it may include rocks of Early Miocene age. Unconform-
ably overlying the Zigzag Formation is the Kennon Formation of Middle
Miocene age (Balce et al., 1980), which consists of limestones that out-
crop in a discontinuous north-trending belt west of the district. Uncon-
formably overlying all of the above-mentioned formations is the
Klondyke Formation of Late Miocene age (Balce et al., 1980; Mitchell
and Leach, 1991; Wolfe, 1988), which is composed mainly of clastic
rocks that are very largely or entirely andesitic in composition. The
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