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Systematic spatial analysis of mineral deposit point patterns can reveal significant spatial properties of mineral
systems, with major implications for regional mineral prospectivity modelling. For valid results, a study area
needs to be clearly defined, taking into account permissiveness of the geological units for a particularmineral sys-
tem and effects of cover. Standard statistical tests assuming an isometric contiguous study area with regionally
homogeneous distribution of deposits are likely to produce invalid results. Analysis of regional uniformity of spa-
tial deposit density is required for adequate design and interpretation of tests for clustering. Spatial distribution of
orogenic gold deposits in the Hodgkinson Province in Queensland and the Western Lachlan Orogen in Victoria
(Australia) indicates the presence of significant regional linear metallogenic zones, probably controlled by
deep crustal domain boundaries oblique and not related to any recognisedmajor faults. Within themetallogenic
zones in both regions, individual gold occurrences are strongly clustered into orefields, but the distribution of ore
fields is random.

Crown Copyright © 2015 Published by Elsevier B.V. All rights reserved.

1. Introduction

Predictive mineral potential modelling (both in forms of
prospectivity mapping and quantitative mineral resource assess-
ments) typically uses a combination of knowledge of essential natu-
ral processes leading to the formation and preservation of mineral
deposits (mineral systems), on the one hand, and empirical evidence
of spatial association betweenmineral deposits and other geological ob-
jects or their properties, on the other. However, any predictive model-
ling is invariably impeded by limited knowledge of mineral systems
and frequently obscure manifestations of major metallogenic factors.
Consequently, there is a significant risk of not recognising some essen-
tialmineralisation controls, potentially leading to grossly biasedmodel-
ling results.

In an area with a relatively large number of knownmineral deposits,
their spatial distribution can provide critical information on
metallogenic processes operating at different scales. For example, signif-
icant metallogenic controls may have only cryptic expressions in tradi-
tional geological datasets, initially revealing themselves only in the
spatial distribution of mineralisation. The latter could also help to vali-
date a common assumption of deposit clustering. Recognising cryptic

regional metallogenic controls and establishing whether deposits (par-
ticularly large ones) tend to be close or distal from each other have
major implications for exploration targeting. For example, major de-
posits within a province could occur in a relatively narrow richly
endowed metallogenic zone (discordant to regional geological struc-
tures recognised at surface), surrounded by large geologically similar
areas containing only sparse and mostly economically insignificant
mineralisation. It is then critical to focus exploration for major deposits
on that zone. Similarly, if major deposits tend to be spatially separated
from each other by a relatively large distance, then extensive explora-
tion in a close vicinity to a knownmajor deposit may be a flawed explo-
ration strategy if a desired target is another major deposit. Such
information can be particularly important at scales of tens to hundreds
of kilometres — intermediate between those of a broad regional scale
(focusing on regional geodynamic and associated metallogenic factors)
and detailed camp to deposit-scale studies (focusing on direct observa-
tions over relatively small areas).

Methods of spatial statistical analysis of point patterns are well de-
veloped andwidely used in social andphysical sciences, including appli-
cations in geology (Getis and Boots, 1978; Cressie, 1991; Diggle, 2003;
Illian et al., 2008). They are appropriate for investigating stochastic pro-
cesses, manifestations of which can be represented, at the scale of anal-
ysis, by a finite set of points. In a regional-scale prospectivity analysis
(covering thousands of km2), mineral deposits can be adequately
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represented by points, which has been almost universally accepted in
previous spatial and mineral prospectivity analyses (Bonham-Carter,
1994; Porwal et al., 2003; Carranza, 2008, 2009).

Various techniques of spatial statistical data analysis have been ap-
plied to investigate distribution of mineral deposits, mostly involving
methods of point pattern and fractal analysis (De Geoffroy and
Wignall, 1971; Agterberg, 1984; Harris, 1984; Carlson, 1991; Kreuzer
et al., 2007; Raines, 2008; Ford and Blenkinsop, 2008; Carranza, 2008,
2009; Mamuse et al., 2009, 2010; Singer, 2008; Singer and Menzie,
2010; Singer and Kouda, 2011; Dirks et al., 2013). However, different
spatial statistical methods have been mostly used in isolation. As each
specific method only characterises a particular aspect of a point pattern,
outputs of any individual test could be insufficient to make reasonable
inferences about spatial distribution of deposits, potentially leading to
erroneous interpretations. Importantly, most traditional spatial statisti-
cal tests imply someunderlying assumptions (similar to the assumption
of the normal distribution in many classical statistical tests). In practice,
these assumptions are rarely explicitly stated, analysed and validated,
even though they are frequently violated. Formal confirmatory statisti-
cal analysesmay not adequately characterise spatial distribution ofmin-
eral deposits, which in many situations would be more amenable to a
suite of complementary methods for exploratory spatial data analysis.

Suitability of specific methods to study patterns of mineral deposits
depends on ultimate goals of an analysis. The focus may be on the spa-
tial distribution of the intensity of ametallogenic process (e.g., mapping
zones of high or low spatial deposit density), interaction of points with
each other (e.g., clustering or dispersion), spatial association between
deposits and other features (spatial covariance with one or more
explanatory variables), or a combination of the above. This paper de-
scribes a joint application of several complementary methods of spatial
data analysis, many of which are not commonly used in mineral
prospectivity modelling but can provide important insights into the
spatial distribution of mineral deposits and underlying regional
metallogenic controls. The selected set of methods is far from exhaus-
tive and more powerful alternatives and comprehensive modelling
strategies have been developed for some of them in recent years
(Diggle, 2003; Illian et al., 2008; Gelfand et al., 2010). Themethod selec-
tionwas deliberately biased towards traditionalmethodswhich are rel-
atively easy to implement using standard readily available software and
outputs ofwhich are amenable to a reasonably straightforward intuitive
interpretation. A major goal of this paper is to discuss pitfalls of many
traditional spatial statistical methods applied to investigate the spatial
distribution of mineral deposits and to illustrate their tentative use as
part of comprehensive exploratory spatial data analysis. The reviewed
methods include analyses of: centrography and directional distribution,
Fry plots, nearest neighbour distances, spatial density and Ripley's K
function. A systematic spatial data analysis, focusing on an effective
combination of individual methods, was applied to investigate regional
spatial patterns of orogenic gold deposits in the Hodgkinson Province in
north Queensland and the Western Lachlan Orogen in central Victoria
(Australia). Outputs of the applications of spatial data analysis discussed
in this paper have major implications for mineral resource assessments
and exploration targeting in those regions.

2. Methods for spatial analysis of point patterns

2.1. Overview of methods and modelling strategies

A point pattern within a study area can be characterised by statis-
tical measures and properties describing the pattern as a whole, as
well as by indicators of more local properties of the spatial distribu-
tion of points within the pattern. The former can be described by a
series of summary statistics providing information on the geographic
centre, spread and directional anisotropy (centrographic and direc-
tional distribution spatial analysis) and the average spatial density
of the point pattern. Estimates of average spatial mineral deposit

densities have been extensively used in quantitative mineral re-
source assessments to estimate numbers of undiscovered deposits
in a study area based on average deposit densities in geologically
similar areas (Singer et al., 2001; Singer and Kouda, 2011). In con-
trast, methods for analysing centrographic and overall directional
properties have rarely been applied to investigate mineral deposit
patterns (Mamuse et al., 2009).

A wide range of other spatial statistical methods place more empha-
sis on describing local internal properties of patterns, mostly focusing
on the distribution of points in relation to each other. A point pattern
(e.g., representing a group of known mineral deposits in a study area)
is typically compared to a simple theoretical point pattern to classify
the analysed pattern into one of several basic types. Then, inferences
can bemade about the character of a point process and, possibly, an ex-
pected distribution of other points in the study area (such as undiscov-
ered deposits).

Point patterns can be subdivided into several basic types (Getis and
Boots, 1978; Diggle, 2003). Firstly, the average point density (the num-
ber of points per unit area) can be either uniform throughout a study
area (a homogeneous distribution) or significantly vary in space (a
non-uniform, or heterogeneous distribution). The latter could be aman-
ifestation of the underlying spatial heterogeneity of major factors con-
trolling point processes. This is commonly observed for mineral
deposits (e.g., a major structural corridor controlling the location of a
richly endowedmetallogenic zone). Secondly, dependingon the charac-
ter of interpoint interaction, point patterns can be described as random,
clustered or dispersed (regular).

The character and extent of interpoint interaction in an analysed
point pattern is typically determined by comparison with a point
pattern of complete spatial randomness (CSR). A pattern of CSR is
generated by a uniform Poisson process, which (i) uniformly operat-
ed throughout a study area at a constant intensity and (ii) was
characterised by the independence of the location of each point in re-
lation to any other points in the area (Diggle, 2003; Isham, 2010).

A significant difference between an observed point pattern and a
pattern of CSR, as indicated by statistical tests, is typically
interpreted as evidence of significant interpoint interactions (clus-
tering or dispersion), assuming a regionally homogeneous point
process.

However, significant departures from CSR can also be due to
regional-scale variations of intensity of the point process, with no signif-
icant local-scale interpoint interactions, or a combination of both fac-
tors. Unequivocally distinguishing the different interpretations is often
impossible on the basis of any single statistic (Diggle, 2003, 2010). Re-
gional heterogeneity of point processes is quite typical for many types
of geographic environments, including mineral systems. Distinguishing
between regional heterogeneity of mineral deposit density and more
local-scale clustering of deposits could have major implications for re-
gional exploration targeting, as mentioned earlier. Extensive explorato-
ry spatial data analysis, using a sequence of various complementary
methods, is thus required to make robust inferences regarding a point
process.

2.2. Centrographic and directional distribution analysis

Simple overall measures of the geometric centre and directional an-
isotropy of a point pattern can be obtained from centrographic and di-
rectional distribution spatial analysis, which can be easily
implemented using various GIS and specialised spatial statistical soft-
ware. Common centrographic statistics for a point pattern are the
mean centre, median centre, standard deviational circle and standard
deviational ellipse (Ebdon, 1988; de Smith et al., 2007). The mean and
median centres are simple summary statistics of a point pattern equiv-
alent to themean andmedian in the classical statistics. Themean centre
MC is characterised by geographic coordinates {X, Y} equal to the

862 V. Lisitsin / Ore Geology Reviews 71 (2015) 861–881



Download English Version:

https://daneshyari.com/en/article/4697056

Download Persian Version:

https://daneshyari.com/article/4697056

Daneshyari.com

https://daneshyari.com/en/article/4697056
https://daneshyari.com/article/4697056
https://daneshyari.com

