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The linear-quadratic bilevel programming

problem according to the rule. Thus, in our proposed genetic algorithm, only the linear programming

Genetic algorithm is solved by the simplex method to obtain the feasibility and fitness value of the
Simplex method chromosome. Finally, the feasibility of the proposed approach is demonstrated by the

Fitness value example.
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1. Introduction

The bilevel programming problems are nested optimization problems with two levels in a hierarchy, the upper level
and lower level decision-makers who have their own objective functions and constraints. The decision maker at the lower
level (the follower) has to optimize its own objective function under the given parameters from the decision maker at the
upper level (the leader), who, in return, selects the parameters so as to optimize its own objective function, with complete
information on the possible reactions of the follower.

The bilevel programming problem(BLP) is defined as [1]:

minF(x, y) (m

subjectto G(x,y) <0
minf(x, y)
y

subjecttog(x,y) <0

where F, f : R" x R"™2 — R are called the objective functions of the leader and the follower, respectively. G : R"' x R™ —>
RPand g : R™ x R" — RY are the constraints of the leader and the follower, respectively. x € R", y € R™ are the decision
variables of the leader and the follower, respectively.
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Although the designation bilevel and multilevel programming was firstly used by Candler and Norton [2], Bracken and
McGill [3] gave the original formulation for bilevel programming in 1973. However, till 1980s, these problems started
receiving the attention motivated by the game theory [4]. And many authors studied bilevel programming intensively
and contributed themselves into those fields. Some surveyed the bilevel programming by presenting both theoretical
results as well as solution approaches and a large number of applications [5-11], while some researched those problems
in monographes [1,12-14]. Various approaches developed for the bilevel programming problems can be classified into
the following categories [14]: extreme point algorithms mainly for the linear bilevel programming, branch-and-bound
approach, complementary pivot approach, descent approach, penalty function approach and intelligent computation.

However, the bilevel programming is neither continuous anywhere nor convex even if the objective functions of the
upper level and lower level and the constraints are all linear because the objective function of the upper level, generally
speaking, is neither linear nor differentiable, because it is decided by the solution function of the lower level problem. Bard
proved that the bilevel linear programming is a NP-Hard problem [15] and even it is a NP-Hard problem to search for the
locally optimal solution of the bilevel linear programming [ 16]. So, it is greatly difficult to solve the bilevel programming for
its non-convexity and non-continuity, especially the non-linear bilevel programming problem.

This paper considers the linear-quadratic bilevel programming problem(LQBP) where the lower level objective function
is a convex quadratic and all remaining functions are linear. The remaining of the paper is organized as follows: The
model and definitions of linear-quadratic bilevel programming problem is presenter in Section 2; Section 3 describes the
genetic algorithm approach for solving LQBP; Some examples are illustrated to demonstrate the feasibility and efficiency in
Section 4; Finally, the paper is concluded in Section 5.

2. The concepts and properties of the LQBP

When the objective function of the lower level is convex quadratic and all remaining functions are linear, the linear-
quadratic bilevel programming problem can be formulated as follows:

(LQBP) minF(x,y) =a'x+b'y (2)
X
where y solves
minf(x,y) = c'x+d'y + ", yHQ ", yH'
y
st.Ax+By <r
x,y>0
where F(x,y), f(x,y) are the objective functions of the leader and the follower, respectively. a,c € R", b,d € R™,
A € R™™M B e R™M™ r ¢ R".Q e RM*m)xMm+m) i5 3 symmetric positive semi-definite matrix. x € R™,y € R™ are
the decision variables under the control of the leader and the follower, respectively.
Definition 2.1. The constraint region of LQBP:

S={(x,y)|Ax+By <r,x,y > 0}.

Definition 2.2. The projection of S onto the leader’s decision space:
S(X) = {x > O|there exists a y, such that (x, y) € S}.

In order to ensure that the problem (2) is well posed we make assumption that S is non-empty and bounded.
In the problem (2), let

e[t g
QA Q
where Qyp € R"2*"2,Q; € R™*™M Q, € R"*" Then f(x,y) is transformed into
fo,y) = c'x+x"Qux + (d +2Q10) "y + ¥ Qoy.
Note that cTx 4+ x"Q,x is constant for each fixed x € S(X), we can assume ¢ = 0, Q, = 0 to ignore those terms without loss

of generality when solving the lower level programming. Thus the optimal solution to the follower problem can be obtained
by solving the following problem:

minf (x,y) = (d+ 2010y + " Qoy (3)
s.t.By <r —Ax
y=>0.

Because Qg is a symmetric positive semi-definite matrix from the supposition that Q is a symmetric positive semi-definite
matrix, there exists a unique and global solution, denoted by y(x), to the problem (3) for each fixed x € S(X) [17].
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