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Fuzzy logic mineral prospectivity modelling was performed to identify camp-scale areas in western Victoria
with an elevated potential for hydrothermal-remobilised nickel mineralisation. This prospectivity analysis
was based on a conceptual mineral systemmodel defined for a group of hydrothermal nickel deposits geolog-
ically similar to the Avebury deposit in Tasmania. The critical components of the conceptual model were
translated into regional spatial predictor maps combined using a fuzzy inference system. Applying additional
criteria of land use restrictions and depth of post-mineralisation cover, downgrading the exploration poten-
tial of the areas within national parks or with thick barren cover, allowed the identification of just a few po-
tentially viable exploration targets, in the south of the Grampians-Stavely and Glenelg zones. Uncertainties of
geological interpretations and parameters of the conceptual mineral system model were explicitly defined
and propagated to the final prospectivity model by applying Monte Carlo simulations to the fuzzy inference
system. Modelling uncertainty provides additional information which can assist in a further risk analysis for
exploration decision making.

Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

Effective regional exploration targeting for major mineral deposits
and camps in poorly explored areas is one of the most significant chal-
lenges for the mineral exploration industry. Defining and ranking re-
gional targets are often done subjectively, on an intuitive level, which
mainly draws from specific depositmodels and past exploration experi-
ences of the targeting geologist. This results in an introduction of sys-
temic uncertainties (McCuaig et al., 2010; Porwal et al., 2003) in the
formof bias resulting from the targeting geologist's subjective proclivity
for the specific deposit model and/or past exploration experience. GIS-
based prospectivity analysis has been developed in the last 30 years in
an attempt to complement expertise of exploration geologists with ob-
jective tools more suitable for efficient and repeatable processing and
integration of vast amounts of data from numerous information
sources. However, these approaches generally do not explicitly deal
with uncertainties resulting from inadequacies in the primary data
(e.g., imprecision, inconsistent coverage) or from subsequent data pro-
cessing (e.g., interpolation).

In recent years, prospectivity analyses have increasingly used the
mineral systems approach (Czarnota et al., 2010; Hronsky and Groves,

2008; Knox-Robinson and Wyborn, 1997; McCuaig et al., 2010;
Wyborn et al., 1994). This approach is based on breaking down the geo-
logical processes, which may lead to the formation of mineral deposits,
into several groups of critical processes.While individual mineral system
models vary in details of the break-down, common groups of critical pro-
cesses include: 1) sources ofmetals and fluids; 2) geological features and
processes responsible for transporting and focusing mineralising fluids;
3) metal deposition mechanisms.

Thepurpose of this study is to apply themineral systems approach to
perform a systematic regional prospectivity analysis for hydrothermal
nickel deposits in western Victoria. On a broad regional scale, the region
has been previously identified as having a potential for hydrothermal
nickel deposits (Champion et al., 2009; Seymon, 2006). There has been
only limited exploration for Avebury-style nickel mineralisation in re-
cent years (Beaconsfield Gold, 2008; Evans and Cuffley, 2008; Weber
and Guzel, 2009), with no deposits discovered to date. This study is
based on the current understanding of the essential characteristics of
the hydrothermal nickel mineral systems, specifically of the Avebury
style (see Section 3) and of the presence of the critical mineral system
components in the region. It utilises GIS-based fuzzy prospectivity
modelling techniques to identify ore field/camp-scale areas with en-
hanced mineral prospectivity and exploration potential. It builds upon
the previous prospectivity analysis of hydrothermal nickel deposits in
Tasmania (González-Álvarez et al., 2010) and ongoing research
into the genetic aspects of hydrothermal nickel mineral systems.
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In addition, we attempt to quantify uncertainty in the resulting
prospectivity maps using Monte Carlo techniques. The outputs are
therefore not only potential exploration targets but also confidence
in each target.

2. Methodology

2.1. Overall approach

On a high conceptual level, semi-automated GIS-based methods of
prospectivity modelling can be subdivided into data-driven, knowledge-
driven and hybrid categories (Bonham-Carter, 1994; Carranza, 2008;
Porwal et al., 2003). Data-driven methods are based on empirical spatial
statistical associations between known mineralisation and ‘mappable’
geological features. These methods are most suitable for mineral prov-
inces with a reasonably large number of known deposits. Popular data-
driven methods include weights of evidence, logistic regression and neu-
ral networks. Knowledge-driven and hybrid methods, on the other hand,
rely on subjective expert opinions or more structured conceptual models
defined by experts. These methods (including fuzzy logic, applications of
probability and Dempster–Shafer belief theories and various structured
expert systems) can be used in poorly explored terranes with few or no
known deposits.

There are only a few minor nickel occurrences known in the study
area. In addition, hydrothermal nickel deposits are relatively rare world-
wide and remain poorly characterised and understood. This precludes
an effective use of empirical data-driven prospectivity modelling tech-
niques. We considered fuzzy logic modelling to be an appropriate
knowledge-driven method of prospectivity analysis for this study. This
technique is reasonably common in mineral prospectivity mapping. It
has been recently used for a similar regional prospectivity assessment in
Tasmania (González-Álvarez et al., 2010). Its additional advantage is
that it can be modified and used to explicitly define, propagate and ex-
press uncertainty, which is important in the current study, as further dis-
cussed below.

The prospectivity analysis in this study involved the following steps:

• Review of hydrothermal nickel deposits worldwide. It was under-
taken to identify essential geological characteristics of deposit
groups with possible analogues in western Victoria.

• Definition of a conceptual model of hydrothermal Ni mineral sys-
tems applicable to western Victoria. A particular emphasis was
made on the identification of likely critical components of the hy-
drothermal nickel mineral system(s) that operate at an ore field/
camp scale and are essential for practical exploration targeting.

• Translation of the critical mineral system components into spatially
defined regional prospectivity criteria in western Victoria.

• Definition of a fuzzy logic inference system reflecting likely interac-
tions between the critical prospectivity criteria, consistent with the
conceptual mineral system model.

• Prospectivity modelling, combining individual ‘mineral system compo-
nents’ maps into a single mineral prospectivity map using the fuzzy
logic inference system.

2.2. Fuzzy prospectivity modelling

A generalised fuzzy model for GIS-based mineral prospectivity
mapping can be defined as follows. If X is a set of n predictor maps
Xi (where i=1 to n) with r map classes, denoted as xij (where j=1
to r), then n fuzzy sets Ai in X, containing favourable indicators for
the targeted mineral system, can be defined as:

~Ai ¼ xij; μÃ
ui

� �
xijXi

��� ð1Þ

where μÃi is the membership function for estimating the fuzzy member-
ship value of xij in the fuzzy set Ãi. The fuzzy membership

function μÃi can be linear, Gaussian or any other appropriate
function (Bonham-Carter, 1994; Carranza, 2008; Porwal et al.,
2003; Zimmerman, 1991).

A typical fuzzy model is implemented in two steps: defining fuzzy
membership values for all map classes of the input predictor maps
and combining the predictor maps to produce a prospectivity map.

2.2.1. Estimation of fuzzy membership values of predictor classes
The following linear function has often been used to estimate

fuzzy membership values (e.g., González-Álvarez et al., 2010;
Porwal et al., 2003):

μ ~Ai
¼ mi �wj � cf i

D
ð2Þ

where mi is the map weight, wj is the class weight, cfi is the confi-
dence factor and D is a denominator set to constrain μÃi to the range
[0,1]:

D ¼ max mif g � maxfwjg � max cf if g: ð3Þ

Map weights and confidence factor are often subjectively assigned
a value between 1 and 10 based on expert knowledge. Class weights
are also assigned values between 1 and 10. Map weight and class
weight, respectively, indicate the perceived importance of a predictor
map and a class on the predictor map. The confidence factor is
assigned to a predictor map based on the degree of directness, that
is, how closely it represents an exploration criterion. The predictor
map gets a higher confidence factor if it directly maps the exploration
criteria and a lower confidence factor if it is based on mapping the in-
direct response of the exploration criterion. Confidence factor is also
used to account for the uncertainties in the primary dataset that
was used to create a particular predictor map.

2.2.2. Combining predictor maps and evaluating uncertainty
In fuzzymodelling, predictormaps are combined using a fuzzy infer-

ence engine. It constitutes a number of parallel and/or serial networks
that sequentially combine predictor maps through fuzzy set operators
(see Bonham-Carter, 1994, p. 301; Carranza and Hale, 2001; Porwal et
al., 2003 for details). The design of an inference engine should be consis-
tent with the mineral systemmodel under consideration. The output of
an inference engine is a fuzzy prospectivitymap for the targetedmineral
system.

Geological understanding of the hydrothermal nickel mineral sys-
tem is still evolving and there are significant uncertainties on the crit-
ical components of the mineral system, their relative importance and
details of their possible relationships. There are also major uncer-
tainties involved in the translation of the inferred critical components
of the mineral system into ‘mappable’ prospectivity criteria (McCuaig
et al., 2010). For example, likely critical processes of a mineral system
are rarely accurately and precisely represented in existing geological
datasets. Even in the best-case scenario, when there is a direct corre-
spondence between a critical process and a mappable criterion (e.g., a
particular rock type), the spatial distribution of that criterion is
mostly interpretative by nature — e.g., interpolation between, or
extrapolation beyond, the observation points, or non-unique inter-
pretations of geophysical datasets. When critical processes can only
be recognised indirectly by proxy, there is an additional uncertainty
of the representativeness of the proxies.

These numerous uncertainties are often made implicit, by making a
series of ‘best-guess’ decisions, on the basis of information available to
prospectivity modelling analysts at the time of analysis. Information
on uncertainty of the individual decisions is usually ignored, leading
to final prospectivity models andmaps whichmay indicate an inappro-
priately high level of confidence. In effect, typical applications of
knowledge-based prospectivity modelling techniques (including fuzzy
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