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Abstract

Exact and approximative expressions for dissipation, the power due to the shear stress at the wall and the boundary layer
thickness corresponding to the unsteady motion of a second-grade fluid, induced by an infinite plate subject to a shear stress, are
established. For «; — 0, similar results for Newtonian fluids performing the same motion are obtained. The results that have been
obtained here are different to those corresponding to the Rayleigh—Stokes problem. A series solution for the velocity field is also
determined. Its form, as was to be expected, is identical to that resulting from the general solution using asymptotic approximations.
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1. Introduction

The flow of non-Newtonian fluids has gained special attention due to their applications in various branches of
science, engineering and technology. It is difficult to suggest a single model which exhibits all properties of these
fluids, they being classified as: (1) fluids for which the shear stress depends on the shear rate; (2) fluids for which
the relation between the shear stress and shear rate depends on time; and (3) fluids which possess both elastic and
viscous properties, called viscoelastic fluids or elastico-viscous fluids. Although many constitutive equations have
been suggested, many questions are still unresolved. Some of the continuum models do not give satisfactory results
in accordance with the available experimental data. Therefore, in many practical applications, some empirical or
semi-empirical equations have been used.

A constitutive equation is a relation between stress and local properties of the fluid. For a fluid at rest the stress
is wholly determined by the hydrostatic pressure. In the case of a fluid in motion the relation between stress and
the local properties of the fluid is more complicated. One of the most popular models for non-Newtonian fluids is
the model corresponding to second-grade fluids [1]. Although there are some criticisms of the applications of this
model [2-4], many papers on this have been published in the last few years [5—15]. Furthermore, it has been shown
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by Walters [16] that for many types of problems in which the flow is slow enough in the viscoelastic sense, the results
given by Oldroyd’s constitutive equations will be substantially similar to those from the second-grade or third-order
Rivlin—Ericksen constitutive equations. Consequently, it would seem reasonable to use the second-grade or third-order
constitutive equations in carrying out the calculations. This is particularly so in view of the fact that the calculation is
generally simpler.

The purpose of this paper is to provide readers with an energetic study of the unsteady flow induced by an infinite
flat plate that applies a specified stress in a second-grade fluid. Of special interest is the energetic balance of the three
terms: changing of the kinetic energy with time, dissipation and power due to the shear stress at the wall. The last
term describes the energy input that is necessary to keep the medium running. A decisive question is that of whether
this term is larger or smaller than in the Newtonian case. In order to realize a good comparison between the two
models, Newtonian and non-Newtonian, both exact and approximative expressions are determined. Our study is also
extended to the boundary layer thickness. Its approximative expression is used to determine a series solution for the
velocity field. This series solution, as was to be expected, is identical to that obtained by means of the asymptotic
approximations.

2. Statement of the problem

The Cauchy stress T for incompressible second-grade fluids is related to the fluid motion by the constitutive
equation [1-16]

T = —pI+ pA| + 1A + A7, (1)

where —pI denotes the indeterminate spherical stress due to the constraint of incompressibility, p is the dynamic
viscosity, 1 and op are material moduli and A and A are the first two Rivlin—Ericksen tensors. The Clausius—Duhem
inequality and the assumption that the Helmholtz free energy is minimum in equilibrium provide the following
restrictions [17]:

u >0, ;1 >0 and o +ap =0. 2)

A comprehensive discussion on the restrictions for w, o; and a2 can be found in the extensive work by Dunn and
Rajagopal [18]. The experimentalists have not confirmed these restrictions. The conclusion is that the fluids that have
been tested are not fluids of second grade and they are characterized by a different constitutive structure.

In this paper, the unsteady flow induced by an infinite plate, that applies a shear stress in a second-grade fluid, is
considered. Initially, the fluid lying over the infinite plate, that is situated in the (x, z)-plane, is at rest. At time zero,
a shear stress is applied to the plate and the fluid is gradually moved. The governing equation corresponding to this
motion, in the absence of a pressure gradient in the flow direction, is [1,6,7,13,14,19,20]

(v +a31)8§u(y, 1) =ou(y,t); y,t>0, ©))

where u(y, t) is the velocity, v = i/ p (p being the constant density of the fluid) is the kinematic viscosity of the fluid
and o = «1/p. For these motions the constraint of incompressibility is automatically satisfied and the balance of the
linear momentum leads to the meaningful equation

yt(y, 1) = pou(y, 1), C))

where 7(y, 1) = Syy(y, t) is the shear stress.
The appropriate initial and boundary conditions, resulting from [19,20], are

u(y,00=0;, y=>0, )
Jt
v+ ad)dyu(y. 1) = 0D S iy =010, 6)
P P
u(y,t), dyu(y,t) — 0 fory — oo, t > 0, @)

where the constant f is the shear stress applied to the plate.
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