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Abstract

In this paper, we obtained rich solutions for the discrete complex cubic Ginzburg–Landau equation by means of the extended
tanh-function approach. These solutions include chirpless bright soliton, chirpless dark soliton, triangular function solutions and
some solutions with alternating phases, and so on. Meanwhile, the range of parameters where some exact solution exists is given.
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1. Introduction

Discrete solitons in nonlinear lattices have been the focus of considerable attention in diverse branches of
science [1]. Discrete solitons have been demonstrated to exist in a wide range of physical systems, e.g. atomic
chains [2] (discrete lattices) with on-site cubic nonlinearities, molecular crystals [3], biophysical systems [4], electrical
lattices [5] and Bose–Einstein condensates [6]. Recently, the existence of discrete solitons in photonic structures
(in arrays of coupled nonlinear optical wave guides [7] and in a nonlinear photonic crystal structure [8]) was
announced and has attracted considerable attention in the scientific community. Photonic crystals, which are artificial
microstructures having photonic bandgaps, can be used to precisely control the propagation of optical pulses and
beams. Furthermore, Ablowitz et al. [9] developed a fully discrete perturbation theory and show that slowly moving
discrete solitons are “chirp”. When using discrete waveguides and photonic crystals, “discrete solitons” appear
naturally and have a number of interesting properties. Many scientists believe that the discrete solitons can have
an important role in this technology.

Discrete Ginzburg–Landau (DGL) models have also been considered in the literature [10–12]. These DGL
lattices are quite often used to describe a number of physical systems such as Taylor and frustrated vortices in
hydrodynamics [10] and semiconductor laser arrays in optics [11]. In these latter studies, the DGL model has been
predominantly used in connection with spatiotemporal chaos, instabilities, and turbulence [12]. Most studies related to
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discrete solitons are directed at conservative systems, i.e., those that preserve energy. However, dissipative systems are
more common in nature, so further studies on discrete dissipative systems are certainly required. Ravoux et al. [13]
studied the discrete analog of the complex cubic Ginzburg–Landau equation having pattern formation phenomena
in mind. In particular, they studied plane wave instability in such systems. Soto-Crespo et al. [14] studied the
discrete complex cubic Ginzburg–Landau (DCCGL) equation having several exact solutions. We consider a discrete
equation set (a model of a dissipative system), viz., the following discrete complex cubic Ginzburg–Landau (DCCGL)
equation [15]

i
dψn

dt
+

(
D

2
− iβ

)
(ψn+1 − 2ψn + ψn−1)+ (1 − iε)|ψn|

2(ψn+1 + ψn−1)− iγψn = 0, (1)

whereψn is complex variable defined for all integer values of the site index n.ψn+1−2ψn+ψn−1 plainly approximates
a second derivative term for a continuous system, and thus D is the coefficient of the diffraction term. γ, ε, β are the
linear dissipation, cubic nonlinear amplification and filter coefficients, respectively. In the limit of β = ε = γ = 0,
Eq. (1) is reduced to the integrable discrete nonlinear Schrodinger equation (AL model) [16]. The continuous limit of
Eq. (1) is the complex Ginzburg–Landau equation (CGLE) [17]

i
dψ
dt

+

(
D

2
− iβ

)
ψxx + (1 − iε)|ψ |

2ψ − iγψ = 0, (2)

which has many applications in describing non-equilibrium systems, phase transitions, and wave propagation
phenomena. When β = ε = γ = 0, Eq. (2) is reduced to the NLS equation.

With the development of symbolic computation, many direct and effective methods are presented to solve nonlinear
differential–difference equations (NDDEs). For instance, Baldwin et al. [18] derived the kink-type solutions of many
spatially discrete nonlinear models in terms of tanh function. Recently, Dai et al. [19] obtained the kink-type solutions
of the discrete sine-Gordon equation by means of the hyperbolic function approach. More recently, the Jacobian
elliptic function method is generalized to solve differential–difference equations [20]. Moreover, the solutions of
the integrable discrete nonlinear Schrödinger equation (AL model) are derived using the extended Jacobian elliptic
function method [21]. However, these methods [19–21] with much complicated calculations cannot give us an unified
formulation to construct exact solutions. Thus one is devoted to finding the suitable and simple methods, which are
extensively and successfully applied in many nonlinear partial differential equations to obtain exact solutions in a
uniform way, to solve differential–difference equations. Nevertheless, these methods are hardly generalized to solve
differential–difference equations because of the difficulty to search iterative relations between lattice indices, for
example, the relations from indices n to n ± 1. Fortunately, by careful analysis, we present the extended tanh-function
method for differential–difference equations and successfully find the iterative relations between lattice indices. The
virtue of this proposed method is that, without much complicated calculations, we circumvent integration to directly
get many exact solutions in a uniform way. Another feature of this method is that it provides us a guideline to classify
the various types of the solution according to the parameter δ [the meaning of δ see (6) and (7) in Section 2]. Applying
this method, we investigate the discrete complex cubic Ginzburg–Landau (DCCGL) equation (1) and obtain chirpless
bright soliton, chirpless dark soliton, triangular function solutions and some solutions with alternating phases.

2. Extended tanh-function method for NDDEs

In this section, we would like to outline the extended tanh-function method for NDDEs step-by-step.
Consider a system of M polynomial DDEs

4(un+p1(x), . . . ,un+pk(x), . . . ,u′
n+p1

(x), . . . ,u′
n+pk

(x), . . . ,u(r)n+p1
(x), . . . ,u(r)n+pk

(x)) = 0, (3)

where the dependent variable un has M components ui,n , the continuous variable x has N components xi , the discrete
variable n has Q components n j , the k shift vectors pi , and u(r)(x) denotes the collection of mixed derivative terms
of order r .

According to the tanh-function method [18,19], the main steps of the extended tanh-function method for NDDEs
are outlined as follows.
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