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Abstract

Kalman filtering has become a powerful framework for solving data assimilation problems. Of interest here are the low-rank
filters which are computationally efficient for solving large-scale data assimilation problems. Together with theoretical aspects on
the basis of which some common low-rank filters are designed, the paper also presents numerically comparative results of data
assimilation using an air pollution model. The performance of such filters, as depending on the distance between the measurement
locations and emission points, is investigated.
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1. Introduction

Originally designed for guidance problems, the Kalman filter [1] has a long history of merging models and
measurements in electrical engineering and control. The growing availability of cheap computing power during the
last decade made the filter approach feasible for large air pollution models too. Kalman filtering represents a powerful
framework for solving data assimilation problems [2]. For the implementation of a Kalman filter, the evolution of the
state and observation of measurements can be described with the stochastic system:

xt
[k + 1] = A[k]xt

[k] + η[k], yo
[k] = H[k]

′xt
[k] + ν[k] (1)

with xt
[k] ∈ Rn being the true state vector at time t[k], A[k] a deterministic model, η[k] ∈ Rn a Gaussian distributed

model error (zero mean, covariance Q), and yo
[k] ∈ Rr a vector of observations with ν[k] the representation error

(Gaussian with zero mean and covariance R). The superscripts t , o, and later on f and a refer to the true, observed,
forecasted and analyzed entities, respectively. We also mention that the time indices for A and H′ will be omitted in
the following equations, assuming that the time is implied by the state where the operators act on.

The aim of the filter operations is to obtain the mean x̂a and covariance Pa for the probability density of the true
state. The filter equations for this system contain the forecast stage given by:

x̂ f
[k + 1] = A[k]x̂a

[k], P f
[k + 1] = APa

[k]A + Q[k] (2)
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and analysis stage expressed by

xa
= x̂ f

+ K(yo
− H′x̂ f

) (3)

Pa
=

{
(I − KMV H′)P f , KMV

= P f H′(H′P f H + R)−1

(I − KH′)P f (I − KH′)′ + KRK′, arbitrary gain K.
(4)

In the case of a large model, the propagation of the covariance matrix in (2) represents the most expensive part in
the full rank filter. If A is defined by an n × n matrix, then the dynamical model is called 2n times to perform the
operation A(AP)′. Limitation of both the number of model evaluations as well as the storage requirements will be
achieved in this study by reducing the rank of the covariance matrix.

Bierman [3] proposed to write the equations for the Kalman filter using the factorization P = SS′. Numerical
inaccuracies made in the computation and storage of the matrix S will never affect the property of the positive
definiteness of P. Inaccuracies will even be reduced, since the condition number of S is only the square root of
the condition number of P.

The idea of factorization is useful to reduce the storage requirements of P. Consider a covariance matrix P written
as the product of a rectangular matrix square root S and its transpose:

Pn×n = Sn×mS′
m×n .

In order to obtain the Kalman filter in square root form, apart from the previous factorization P = SS′ for the
covariance of the true state, we also introduce the factorizations Q = TT′ and R = UU′ for the covariance of the
forecast and representation error, respectively. Further, a matrix Ψ ′

= H′S is introduced for the mapping of the
forecast covariance root to the observation space.

After (2), the forecasts of mean and covariance become:

x̂ f
[k + 1] = Ax̂a

[k] (5)

(S f S f ′
)[k + 1] = A(SaSa ′

)[k]A + TT′
[k]

or S f
[k + 1] =

[
ASa

[k], T[k]
]
. (6)

The second formula in (6) is able to reduce both the computational complexity and the numerical inaccuracies, since
the condition number of S f or Sa is only the square root of the condition number of P f and Pa , respectively. The
introduction of a forecast error leads to the extension of the square root with the columns of T. Each new column
introduces a new direction for the uncertainty of the state vector. To prevent the number of modes from growing
to infinity, filter algorithms based on factorizations include approximations or mechanisms to avoid the growth, for
example avoiding the use of dynamic noise completely, projection of T on the base spanned by AS, or reduction of
the number of columns whenever necessary. If T is to be added to the covariance square root, the degree of freedom in
the system noise (rank of T) should be of order 10–100 to keep the storage and propagation of the covariance square
root within feasible bounds.

This paper presents mathematical aspects of some Kalman filters in factorized form, together with comparative
numerical results obtained by applying such filters to data assimilation problems. The paper is organized as follows.
In Section 2 we briefly describe some factorized filters, namely the: Reduced Rank Square Root (RRSQRT) filter,
Partially Orthogonal Ensemble Kalman (POENK) filter and its variant (COFFEE), also including the Ensemble
Kalman filter. In Section 3, the performance of the various algorithms is illustrated by numerical tests carried out
with an advection–diffusion model application. The last section contains some concluding remarks.

2. Description of some factorized filters

2.1. RRSQRT filter

In the Reduced Rank SQuare RooT (RRSQRT) formulation of the Kalman filter, the covariance matrix is expressed
in a limited number of (orthogonal) modes, which are re-orthogonalized and truncated to a fixed number during each
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