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a b s t r a c t

ODMixed is a computer program to obtain optimal designs for linear mixed models of lon-

gitudinal studies. These designs account for heterogeneous correlated errors and for data

with dropout. Designs are compared by using relative efficiencies, e.g., between a D-optimal

design for homogeneous data and another for heterogeneous data or between a D-optimal

design for complete data against another that optimizes designs when data is missing at

random. Two examples are worked out to illustrate how researchers could use this computer

program to profit of optimal design theory at the planning stage of longitudinal studies.

© 2011 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

At the planning stage of longitudinal studies, the allocation
of the resources (time, subjects and/or money) is a critical
issue. To collect longitudinal data, it is common practice to
use equally spaced designs since these designs are model-free.
However, these designs can be suboptimal when compared
with their optimal counterparts [1] or when data is missing
[2]. Both studies showed that at the planning stage of longitu-
dinal data, researchers may profit, substantially, from optimal
design theory.

Optimal design of experiments give the lowest estimators
variance such that the estimators have high precision. How-
ever, these designs are model-dependent, i.e., the researcher
must have prior knowledge about the underlying model fit-
ting the longitudinal data. These data are usually correlated,
can have heterogeneous variances and/or can be affected by
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dropout. The most suitable model to fit data with correlated
and unbalanced data structures is the linear mixed models [3].

In this paper, we present a computer program ODMixed
that computes optimal designs for complete data, for data suf-
fering from dropout and for data having heterogeneous error
structures. ODMixed is made in Matlab. Matlab is chosen
because of its flexible plotting capabilities, robust optimiza-
tion algorithms and steadily growing number of toolboxes,
not to mention the fact that it is been steadily introduced in
biomedical and health sciences applications.

To our knowledge this is the first program that computes
optimal designs for heterogeneous longitudinal data and data
missing at random. Notice that the optimal designs with com-
plete data and homogenous error structure can be matched
with those obtained for one-cohort using the Program for
Optimal design of Longitudinal Studies (POLS) which is an
interactive program implemented in Matlab that allows to
compute D-optimal designs for different polynomial models
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with mixed effects for a set of different number of cohorts
[4].

This paper is organized as follows. In Section 2, the design
problem for the data with dropout and heterogeneous error
variance structure will be briefly discussed and the relative
efficiency will be introduced as a measure to compare two or
more designs. In Section 3, the graphical user interface will be
introduced and applied to two motivating examples. Finally,
some conclusions and recommendations are provided in Sec-
tion 4.

2. Longitudinal data and linear mixed
models

In longitudinal studies, the conditions for continuous
responses yi of n subjects must be planned well ahead the
collection of the data. A typical model for longitudinal data is
the linear mixed models. It is defined as

yi = Xiˇ + Zibi + ei, (1)

where yi is the q × 1 outcome vector of subject i, Xi and Zi

are the q × p and q × k design matrices for fixed and random
parameter vectors ˇ and bi, respectively, and ei is the q × 1
error matrix. The indices i = 1, . . . , n and j = 1, . . . , q denote
each subject participating in the biomedical or social longitu-
dinal study and each time point (date) in the planning scheme
of the longitudinal study, respectively.

For the purpose of the program ODMixed, the model (1) is
rewritten as follows

yi = f (Xi; ˇ) + g(Zi|bi) + ei, (2)

where f is a polynomial function representing the time-
connected fixed-effects of up to the third degree, i.e., p = 4
parameters; g is a polynomial function representing the also
time-connected random-effects of up to the first degree, i.e.,
k = 2, and ei is the random error.

The function g is conditional on bi, bi represents how the
ith subject deviates from the average population and it is
assumed to be normally distributed with mean 0 and ran-
dom covariance matrix Cov(b) = D. D is a k × k matrix with
elements dsl where s, l = 1, 2. These elements denote the vari-
ances of the random intercepts, random slopes and their
covariances.

The random error of each subject is represented by ei. This
error is assumed to be normally distributed with mean 0 and
covariance matrix Var(ei) = ˙�˙ with ˙ = ˙(�1, . . . , �q) diag-
onal allowing heterogeneity of the error. The within-subject
correlation matrix � = � (�) with � denoting the autocor-
relation between the jth and j′th time points xj and xj′ ,
respectively. Notice that the time points xj are not necessarily
equally spaced and that bi and ei are independent from each
other.

Two cases are distinguished: errors ei are homogeneous
among different time points xj, i.e., �1 = �2 = · · · = �q = � and
Var(ei) = �2� or there is heterogeneity in the error Var(ei) =
˙�˙, i.e., the diagonal elements of ˙ are all unequal in
value.

Notice that the subindex i have been omitted since the
measurements of each subject i are performed at the same
time-points.

2.1. Optimal designs and response probability function

The exact design � for the linear mixed model (1) is defined as:

� =
{

x1 x2 . . . xj . . . xq

n1 n2 . . . nj . . . nq

}
, where j = 1, . . . , q, (3)

At the first design point x1 of the study, the probability of
response (i.e., the chance that data from a subject is avail-
able at this time point) is p(x1) = 1 and the number of subjects
responding at x1 is equal to n1. At the jth design point with
response probability p(xj), the expected number of subjects
nj = n1p(xj). Finally, at the last design point xq, the number of
subjects nq represents the number of subjects completing the
experiment. For j = q, nq is the number of subjects respond-
ing at all q design points. We will assume that at least one
subject is observed at this last point, i.e., nq ≥ 1. It is also
assumed that p(xj) is a monotonically decreasing function with
p(x1) ≥ p(x2) ≥ · · · ≥ p(xq) where p(x1) > p(xq).

Notice that a response probability p(xj) at a design point
xj is complementary to a dropout probability 1 − p(xj) at the
same design point xj and that an important assumption con-
sidered all along this paper is that the dropout occurs through
a noninformative mechanism, i.e., responses are missing at
random (MAR), see e.g., [9].

For complete data, the number of subjects responding to
each xj is assumed equal, i.e., p(xj) = 1 for all j. But, if a dropout
process arises, the number of subjects responding at xj will
(monotonically) decrease. So, the probability of obtaining data
at design point xj will depend upon each design point. The
values of the design time points xj and the response probability
at those points are confined in a given design space X and
probability range 0 < p(xj) ≤ 1.

The computer program ODMixed can handle two polyno-
mial response functions, namely, a linear function plin(xj) =
a0 + a1xj and a quadratic function pquad(xj) = a0 + a1xj + a2x2

j
.

Further details are given in [2].

2.2. Asymptotic covariance matrix

We introduce the super-index [j] to group subjects having j

measurements with design matrices X[j] for the fixed-effects
and Z[j] for the random-effects and connected to the response
probability p(xj).

In general, if the number of subjects having all responses
to all q design points is denoted by mq = nq and the number
of subjects with only j < q responses is denoted by the differ-
ence mj = nj − nj+1, then the number of subjects mj having j

responses is given as:

mj =
{

nq if j = q,

nj − nj+1 if j < q.
(4)

The design matrices X[j] and Z[j](j = 1, . . . , q) have size j × p

and j × k, respectively. The linear mixed model (1) for data with
dropout and heterogeneous error implies a marginal model
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