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Isotopic fractionation factors for oxygen and silicon in selected silicates (quartz, enstatite, forsterite, lizardite,
kaolinite) are calculated using first-principles methods based on density-functional theory. Good agreement
between theory and experiment is found in the case of oxygen. In the case of silicon, agreement and
differences with existing estimates of equilibrium fractionation factors are discussed. The relationship
between silicon and oxygen fractionation factors, silicate polymerization degree and chemical composition is
studied and compared with previous semi-empirical models.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Silicon isotopic studies have been carried out for over half a century
(Reynold and Verhoogen, 1953; Epstein and Taylor, 1970; Clayton et al.,
1978; Douthitt, 1982; Ding et al., 1996; De la Rocha et al., 2000; Georg
et al., 2007a,b). A large numberof terrestrial and extraterrestrial samples
were investigated and the general picture of silicon isotope distribution
in naturewas outlined (Douthitt,1982; Ding et al.,1996). In recent years,
several studies have also been devoted to surface environments and low
temperature conditions, even though it is difficult to conclude about the
nature (kinetic or equilibrium) of the fractionation process (De la Rocha
et al., 1997; Basile-Doelsch et al., 2005).

Concerning igneous rocks, the systematic trends of δ30Si led previous
workers to postulate equilibrium fractionation processes (Douthitt,
1982). Nevertheless, the very small amplitude of silicon fractionation,
conjugated with the limited analytical accuracy, prevented precise
understanding of the systematics of silicon fractionation in igneous
processes. Based on theoretical considerations, the studyofGrant (1954)
suggested that silicon equilibrium isotopic fractionation should depend

on the degree of polymerization of the SiO4 tetrahedra in the silicate
structure. In particular, the silicon isotopic content should be heavier
with higher polymerization degree, and therefore silicon content of the
material. In fact, the use of stable-isotope fractionation to track natural
processes depends on the determination of the controlling structural
parameters. In particular, the conclusions of Grant (1954) imply that
chemical differentiation associated with igneous processes should lead
to an enrichment in 30Si of the silica-rich phases. Such an approach is
similar to the proposed empirical relationships between fractionation of
oxygen and chemical composition (Garlick, 1966).

While Grant's calculation of the quartz–topaz fractionation greatly
overestimates the typically observed values, his theoretical discussion
provided an inspiration for subsequent studies of the geochemical
fractionation of silicon isotopes. Douthitt (1982) remarks that δ30Si of
igneous rocks shows a positive correlation with silicon content. Ding
et al. (1996) also provide several examples for which these trends are
confirmed. The similarity between silicon and oxygen isotopic fractio-
nations has been also emphasized. Douthitt (1982) remarks that silicon
fractionations are roughly 1/3 the magnitude of concomitant oxygen
isotopic fractionations at 1150 °C.

In this context, first-principles computational methods based on
density-functional theory (DFT) canprovide a precise and independent
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determination of the equilibrium fractionation properties of silicates
(Méheut et al., 2007). In this work, we use the same first-principles
approach as in Méheut et al. (2007) to determine the stable isotopic
fractionation of oxygen and silicon for several minerals displaying
various degrees of polymerization of silicate units.We study quartz (Q4),
lizardite (Q3), kaolinite (Q3), enstatite (Q2), and forsterite (Q0), where Qn

denotes the degree of polymerization, n being the number of bridging
oxygens for one SiO4 unit. Despite the fact that these minerals do not
always coexist in nature or occur in high-temperature environments,
they were chosen for their structural and chemical diversity, as well as
for their small unit-cell size. Therefore, this study should be mostly
considered as a thought experiment in which the effect of polymeriza-
tion on silicon isotopic fractionation is investigated. However, some
comparisons with experimental measurements on natural systems are
tentatively proposed in the second part of the paper.

2. Methods

2.1. The isotopic fractionation factor α

β(a,Y) is the isotopic fractionation factor of the element Y between
the phase a and a perfect gas of Y atoms, having the natural mean
isotopic concentration. The isotopic fractionation factor α(a,b,Y)
relative to an atom Y, between two phases a and b can be written as
the ratio of the β-factors relative to this atom and to each phase
separately (Richet et al., 1977).

If a is a crystalline solid, β(a,Y) can be computed from the harmonic
vibrational properties of a using

β a; Yð Þ = Q AY⁎
N

� �
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mY

mY⁎

� �3=2
ð1Þ

where Q(AYN⁎) is the partition function of the system having all the Y
atoms substituted by Y⁎. As discussed inMéheut et al. (2007), Eq. (1) is
precise when Y has a mass larger than hydrogen. The harmonic
partition function of a crystalline solid is:
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∏
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where νq,i are the frequencies of the phonon with wavevector q and
branch index i=1,3Nat. Nat is the number of atoms in the unit cell, N is
the number of sites for the Yatom in the unit cell, T is the temperature,
k is the Boltzmann constant and h is Plank's constant. The product is
performed on a sufficiently large grid of Nq q-vectors in the Brillouin
zone. The ⁎ symbol above the product of Eq. (2) indicates that the
three translational modes with ν0,i=0 are not considered.

2.2. Vibrational analysis

We now discuss an alternative formulation for the β factors. This
formulationwill be used to determine the contribution of the different
vibrational modes (q,i) to the total fractionation.

Let us call νq⁎,i and νq,i the frequencies of the same vibrational mode in
two isotopically differentmaterials. The isotopic fractionation is due to the
quantum-mechanical nature of the vibrations. As a consequence, for
temperatures higher than the Debye temperature, i.e. when the system
behaves classically, the isotopic fractionation is zero and β=1. By imposing
limT → ∞β=1 in Eqs. (2) and (1), we have
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Eq. (3) is the well-known “rule of the high-temperature product”,
also called Teller–Redlich rule (Urey,1947; Bigeleisen andMayer,1947)
for molecular systems.

By inserting Eqs. (3) and (2) into Eq. (1), it easily follows
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where

f �ð Þ = � e−
h�
2kT
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:

Eq. (4) expresses the β-factor as a product of the contributions from
each vibrational mode. We now consider νq⁎,i and νq,i as two values of
the function νq, i

μ , where μ = 1ffiffiffi
m

p . Here, νq, i
μ is the (q,i) frequency in a

system inwhich themass of the Yatomhas the arbitrary valuemand all the
other masses are fixed at their usual value. Using this notation, from Eq. (4)
it follows
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where μ− =(μY⁎+μY) / 2 and Δμ=μY⁎ − μY. We then define
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where Θ(t) is the Heaviside function (Θ=0 for tb0 and Θ=1 for tN0).
In actual calculations, the derivative in Eq. (6) is obtained by finite
differences.

By comparing Eqs. (5) and (6), F(ν) represents the integration of
the contributions of all the modes with νq, i

μ− ≤ν. In the paper, F(ν) will
be used to determine the contribution of the different vibrational
modes to the total fractionation.

2.3. Density-functional theory calculations

The β-factors and the F function are obtained from Eqs. (1), (2), and
(6) using the phonon frequencies νq,i computed from first-principles
within density-functional theory (DFT) (Hohenberg and Kohn, 1964;
Kohn and Sham, 1965).

We use the generalized-gradient approximation to the exchange-
correlation functionalof Perdew,BurkeandErnzerhof (PBE) (Perdewetal.,
1996). The PBE approximation was already used in Méheut et al. (2007),
since it is known to provide a good description of silicates, including the
hydrous ones. The ionic cores are described by norm-conserving
pseudopotentials (Troullier andMartins,1991) in the Kleinman–Bylander
form (Kleinman andBylander,1982). For theMgpseudopotentialwe used
the 2s2,2p6,3d0 configuration, with core radius 1.65, 1.1, 1.3 a.u.,
respectively. The other pseudopotentials are described in the electronic
annexes of Méheut et al. (2007). Computational details for quartz and
kaolinite are the same as in Méheut et al. (2007). For lizardite, forsterite
and clinoenstatite, the electronic wave-functions are expanded in plane-
waves up to an energycut-off εcut=150Ry (such ahigh cut-off is necessary
because of semi-core states considered in the Mg pseudopotential).
Electronic integration is done by sampling the Brillouin zone with a
2×2×2k-point grid for lizardite and forsterite (Monkhorst andPack,1976).
For clinoenstatite, the sampling can be restricted to the Baldereschi point
(1/4,1/2,1/4) (Baldereschi,1973), because of the larger size of the unit cell.

Phonon frequencies are computed using linear response (Baroni
et al., 2001), with the PWSCF package (Baroni et al., http://www.pwscf.
org), using the standard procedure (Méheut et al., 2007). First, the
interatomic force constants are obtained from the dynamical matrices
computed exactly (within DFT) on a n×n×n grid of q-vectors (n=2 for
lizardite, n=1 for clinoenstatite). Long-range effects are taken into
account by computing Born effective-charges and static dielectric
constant (Baroni et al., 2001). Dynamical matrices and thus phonon
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