
Computers and Mathematics with Applications 55 (2008) 1514–1524
www.elsevier.com/locate/camwa

Comparison of implementations of the lattice-Boltzmann method

Keijo Mattilaa,b,∗, Jari Hyväluomab, Jussi Timonenb, Tuomo Rossia

a Department of Mathematical Information Technology, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
b Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland

Abstract

Simplicity of coding is usually an appealing feature of the lattice-Boltzmann method (LBM). Conventional implementations
of LBM are often based on the two-lattice or the two-step algorithm, which however suffer from high memory consumption and
poor computational performance, respectively. The aim of this work was to identify implementations of LBM that would achieve
high computational performance with low memory consumption. Effects of memory addressing schemes were investigated in
particular. Data layouts for velocity distribution values were also considered, and they were found to be related to computational
performance. A novel bundle data layout was therefore introduced. Addressing schemes and data layouts were implemented for
the Lagrangian, compressed-grid (shift), swap, two-lattice, and two-step algorithms. Implementations were compared for a wide
range of fluid volume fractions. Simulation results indicated that indirect addressing implementations yield high computational
performance. However, they achieved low memory consumption only for very low fluid volume fractions. Semi-direct addressing
implementations could also provide high computational performance. The bundle data layout was found to be competitive,
sometimes by a wide margin, in all the cases considered.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Lattice-Boltzmann method; Computational fluid mechanics; High-performance computing; Memory addressing schemes

1. Introduction

While the lattice-Boltzmann method (LBM) has gained popularity in computational fluid dynamics [1], it has
also been recognized that it is both computationally demanding and memory intensive. Depending on the specific
application, simulations may be hampered by an excessive computing time or by high memory requirements. Here,
we consider applications that require very large simulation domains – as measured by the number of lattice nodes –
in which a significant volume fraction is occupied by solid structures. A typical example of such an application is
flow in porous media such as paper and sandstone. Furthermore, we only consider here single-phase flows. Notice
also that the geometry of the simulation domain is assumed to be immobile. This enables particular implementation
techniques.

∗ Corresponding author at: Department of Mathematical Information Technology, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä,
Finland.

E-mail address: kemattil@cc.jyu.fi (K. Mattila).

0898-1221/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2007.08.001

http://www.elsevier.com/locate/camwa
mailto:kemattil@cc.jyu.fi
http://dx.doi.org/10.1016/j.camwa.2007.08.001

K. Mattila et al. / Computers and Mathematics with Applications 55 (2008) 1514–1524 1515

As a result of extensive research efforts, there already exist means to enhance the efficiency of LBM (see for
example Ref. [2] and references therein). It is the aim of this work to analyze various implementations of LBM, so as
to compare their computational performance and memory consumptions. More precisely, we consider explicit time-
marching implementations of LBM with direct, semi-direct, and indirect addressing. Also, we analyze the effect of
data layout on computational performance.

Time evolution in explicit time-marching implementations results from the alternation of two distinct steps,
streaming and collision steps. A streaming step gives rise to coupling of data of adjacent lattice nodes. Differences
between basic algorithms are related to their treatment of this data dependence. We have identified five basic
algorithms for the implementation of LBM: the Lagrangian, compressed grid (shift), swap, two-lattice, and two-
step algorithm [3–5]. Each of these algorithms has its own characteristic features, which are manifested in the
efficiency of implementation. We implemented four of the algorithms with both semi-direct and indirect addressing.
The Lagrangian algorithm was implemented only with direct addressing. We compare here these implementations,
and analyze in particular the influence of the addressing scheme and data layout in each case.

Previously, in Ref. [6], Schulz et al. compared the two-lattice and two-step algorithms with indirect addressing.
They also compared the memory consumptions of their implementations for direct and indirect addressing. Pan
et al. [7] analyzed the two-lattice algorithm with direct and indirect addressing. A Lagrangian algorithm was
introduced and compared with the two-step algorithm in Ref. [3]. To overcome the high memory consumption of
the two-lattice algorithm, Pohl et al. introduced the compressed grid (shift) algorithm, and gave some benchmarking
results including comparison with the two-lattice algorithm [4]. Recently, the compressed-grid algorithm was
investigated further, and the name shift algorithm was proposed [5].

Recently a candidate for the implementation of LBM was developed and named the swap algorithm [5]. Moreover,
in Ref. [5], the computational performance and memory consumption of implementations of the shift, swap, two-
lattice, and two-step algorithms with a collision-optimized data layout and semi-direct addressing were compared.
Here, this comparison is supplemented by analyzing the addressing schemes and data layouts. Collision-optimized
as well as propagation-optimized data layouts and their effect on the computational performance of the two-lattice
algorithm were also analyzed in Ref. [8].

This paper is organized as follows. Section 2 includes a very short exposition of LBM, while Section 3 describes
the data storage model, data layouts, and addressing schemes utilized in our implementations of LBM. The basic
algorithms considered are introduced in Section 4, and results of our numerical experiments are presented in Section 5.
In the numerical experiments, we apply the D3Q19 model with the BGK collision operator and the halfway-bounce-
back boundary condition. Finally, some conclusions are drawn in Section 6.

2. Lattice-Boltzmann method

In 1986, Frisch et al. introduced cellular automata that obey conservation laws [9]. It turned out to be an important
idea, since their automata, lattice-gas cellular automata (LGCA), were capable of simulating real fluid flows. This led
to a rapid progress from which LBM soon emerged [10]. Although there is a historical coupling of LGCA and LBM, it
has already been shown that LBM can be derived directly from the Boltzmann equation [11–13]. In LBM, the state of
the system is defined by single-particle distribution functions fi (Er , t) for the probability of finding a (fictitious) fluid
particle at site Er at time t with velocity Eci . Here and hereafter, Er , t , and Eci are expressed in lattice units. The dynamics
of the system is governed by the lattice-Boltzmann equation (LBE)

fi (Er + Eci , t + 1) = fi (Er , t) + Ωi (Ef (Er , t)), i = 0, . . . , b − 1, (1)

where Ωi is a collision operator and b is the number of possible velocities for the fictitious particles. With Ωi (Ef (Er , t)),
we emphasize the dependence of the collision operator on all b distribution functions associated with site Er at time t .
Eq. (1) describes the time evolution of distribution values fi (Er , t).

LBE can be split into collision and streaming steps:

collision: fi (Er , t?) = fi (Er , t) + Ωi (Ef (Er , t))
streaming: fi (Er + Eci , t + 1) = fi (Er , t?).

This partition of LBE provides a basis – at least conceptually – for the implementation of LBM. A characteristic of
LBM is the simplicity of coding, local interactions that allow for parallel computing, and easy implementation of

Download English Version:

https://daneshyari.com/en/article/470072

Download Persian Version:

https://daneshyari.com/article/470072

Daneshyari.com

https://daneshyari.com/en/article/470072
https://daneshyari.com/article/470072
https://daneshyari.com

