

Available online at www.sciencedirect.com

Chemical Geology 246 (2007) 107-123

Controls on ⁸⁷Sr/⁸⁶Sr ratios of groundwater in silicate-dominated aquifers: SE Murray Basin, Australia

Ian Cartwright a,*, Tamie Weaver b,1, Ben Petrides a,2

^a Hydrogeology and Environment Research Group, School of Geosciences, Monash University, Clayton Vic. 3800, Australia

^b Hydrogeology and Environment Research Group, School of Earth Sciences, University of Melbourne, Vic. 3010, Australia

Received 22 March 2007; received in revised form 13 September 2007; accepted 15 September 2007

Editor: D. Rickard

Abstract

⁸⁷Sr/⁸⁶Sr ratios of groundwater in the southeast Riverine Province of the Murray Basin, Australia are between 0.7107 and 0.7191. The ⁸⁷Sr/⁸⁶Sr ratios vary between different subcatchments and generally decline with distance northwards from the basin margins. There are few carbonates in this region, and Sr is primarily derived from silicate minerals. The spatial variation in ⁸⁷Sr/⁸⁶Sr ratios reflects the distribution of K-rich minerals, such as biotite and K-feldspar in the aquifers. However, major ion chemistry implies that silicate weathering is only a minor process. Sr isotope ratios are most probably controlled by exchange on clays derived from weathering of the silicate minerals. Ion exchange is promoted by the low groundwater flow rates in the Riverine Province and the clay-rich nature of many of the aquifers.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Sr isotopes; Groundwater; Isotopic exchange

1. Introduction

Constraining water–rock interaction, evapotranspiration, dissolution and precipitation of minerals, ion-exchange and groundwater mixing is required for understanding and managing hydrogeological systems. ⁸⁷Sr/⁸⁶Sr ratios of groundwater are important tracers of hydrological processes. The utility of Sr isotopes in

hydrogeology is for a number of reasons. Firstly, minerals with which groundwater and surface water interact have a wide and predictable range of ⁸⁷Sr/⁸⁶Sr ratios. ⁸⁷Sr is produced by the decay of ⁸⁷Rb with a half-life of 48.8 Ga (Faure, 1991). Rb readily substitutes for K and to a lesser extent Na in many minerals, while Sr substitutes for Ca. Thus, the ⁸⁷Sr/⁸⁶Sr ratio of a mineral is governed by its initial ⁸⁷Sr/⁸⁶Sr ratio, its Rb/Sr ratio, and its age (Faure, 1991; McNutt, 2000). In rocks that are more than a few million years in age, Sr derived from K-rich minerals such as biotite and K-feldspar will have high ⁸⁷Sr/⁸⁶Sr ratios. Minerals such as plagioclase that have lower K/Ca ratios will contain Sr with moderate ⁸⁷Sr/⁸⁶Sr ratios, while the Sr in Ca-rich minerals such as calcite or gypsum will have low ⁸⁷Sr/⁸⁶Sr ratios that remain essentially unchanged over

^{*} Corresponding author. Tel.: +61 3 9905 4887; fax: +61 3 9905 4903.

E-mail address: ian.cartwright@sci.monash.edu.au (I. Cartwright).

¹ Now at URS Australia Pty Ltd, Southbank Vic. 3006, Australia.

Now at Coffey Environments Pty Ltd, Abbotsford, Vic. 3067, Australia.

time (Faure, 1991; McNutt, 2000). Secondly, unlike C, O, H, or S isotopes, mineral precipitation and dissolution does not fractionate ⁸⁷Sr/⁸⁶Sr ratios. Thus, minerals in igneous rocks have initial ⁸⁷Sr/⁸⁶Sr ratios that are identical to those of the melt from which they crystallised, limestones have initial ⁸⁷Sr/⁸⁶Sr ratios that are the same as those of the water in which they were formed, as do veins and cements. Finally, the very long half-life of ⁸⁷Rb compared with typical groundwater residence times of <1 Ma means that there is essentially no change in ⁸⁷Sr/⁸⁶Sr ratios due to the decay of ⁸⁷Rb in groundwater.

Commonly, Sr isotopes are used for determining mixing in aquifers between groundwater that has interacted with

rocks that have distinct ⁸⁷Sr/⁸⁶Sr ratios (e.g., carbonates and silicates or young sediments and old radiogenic basement: e.g. Katz and Bullen, 1996; Armstrong et al., 1998; Negrel et al., 2001; Grobe and Machel, 2002; Dogramaci and Herczeg, 2002; Negrel, 2006). In such circumstances, the mixing dominates the Sr geochemistry and controls the ⁸⁷Sr/⁸⁶Sr ratios. Sr isotopes have also been used in silicate-dominated aquifers to examine mineral dissolution (e.g. Bullen et al., 1996; Harrington and Herczeg, 2003). Here, we discuss the Sr isotope geochemistry of groundwater from the Riverine Province of the southeast Murray Basin, Australia, which is a region dominated by silicate-rich aquifers. These data were

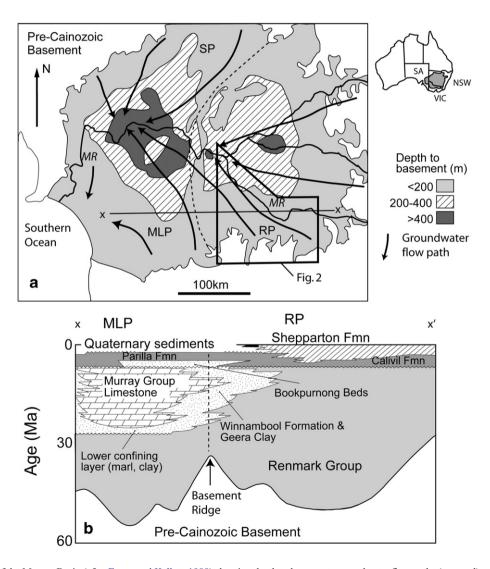


Fig. 1. a. Map of the Murray Basin (after Evans and Kellett, 1989) showing depth to basement, groundwater flow paths (arrowed), and major rivers. MLP = Mallee-Limestone Province, RP = Riverine Province, SP = Scotia Province. NSW = New South Wales, SA = South Australia, Vic = Victoria. Box shows location of Fig. 2. b. Generalised stratigraphic cross-section across the Mallee-Limestone and Riverine Provinces (after Evans and Kellett, 1989) showing major units in the Murray Basin.

Download English Version:

https://daneshyari.com/en/article/4700729

Download Persian Version:

https://daneshyari.com/article/4700729

<u>Daneshyari.com</u>