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Abstract

A description of the steps taken to produce a massively parallel code for particle suspension problems using the lattice
Boltzmann method is presented. A number of benchmarks based on a binary fluid lattice Boltzmann model are used to assess
the performance of the code in terms of the computational overhead required for the particle problem compared with the fluid-only
problem, and for the scaling of the code to large processor numbers. On the Blue Gene/L architecture, the additional computational
cost of particle suspensions of up to 40% solid volume fraction (here over a million particles) is negligible compared with the
fluid-only code.
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1. Introduction

In its most simple form, the lattice Boltzmann (LB) algorithm provides an efficient and effective way to obtain
a numerical solution of the Navier–Stokes equations for incompressible isothermal fluid flow. The method differs
from standard computational fluid dynamics (CFD) techniques by introducing not only a discrete configuration space,
but also a discrete velocity space (for a recent review see, e.g., Ref. [1]). The algorithm then centres on a discrete
distribution function fi (r; t) which has one component for each of the chosen set of discrete velocities {ci }. The
distribution function can be thought of as representing the density of fictitious fluid particles at the lattice site r
with velocity ci ; the hydrodynamic quantities are then the moments of the distribution function. In three dimensions,
there are two common choices for {ci } which ensure the correct symmetry properties of the underlying equations are
observed: D3Q15 and D3Q19, having 15 and 19 velocities respectively. This large number of velocities gives rise
to a significant computational cost in terms of memory. Despite this, LB has significant computational advantages,
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in particular the almost trivial local formulation of the fluid pressure (which is easy to compute compared with the
solution of a Poisson equation required by most conventional CFD methods). The resulting code can then be very
concise, and is easily adapted to parallel computation. Parallel codes are important as providing sufficient resolution
to capture interesting three-dimensional structure while avoiding finite-size effects requires system sizes and run times
which are out of the reach of single processor machines.

Another strength of the LB algorithm is in its utility in complex fluid problems which are characterised by
complicated and/or changing geometry such as fluid mixtures and suspensions of particles in fluids. For the latter,
the boundary conditions required to represent moving solid objects (often based on spheres) can be included via the
standard procedure of bounce-back on links, or BBL [2,4]. This technique has been used successfully to investigate,
for example, sedimentation of suspensions of spheres under gravity [3], the motion of more complex objects such as
ellipsoids [5], and particles in binary fluid mixtures [6]. However, the price to pay for the inclusion of moving particles
is considerably more complexity in code than is required for the basic fluid LB algorithm. With this added complexity,
the parallelisation becomes more difficult to achieve efficiently. The purpose of this work is to describe the steps taken
to produce a highly scalable parallel code for particle suspensions using LB. The basic steps presented in Section 2
are appropriate for a single fluid LB model where particles are represented by BBL. However, once this infrastructure
is in place, it can easily be extended to more complex LB problems, e.g., the binary fluid model which is used for
benchmarks used in Section 3 [6].

There are two standard ways to go about parallelisation for scientific problems: OpenMP [7] – specifically for use
on shared memory machines – or message passing via the message passing interface MPI [8]. While OpenMP has
advantages in terms of ease-of-use, it is domain decomposition and message passing which ultimately opens the way
to efficient scaling to the largest problem sizes which can then be run on the largest distributed memory machines.
The challenge is then to write appropriate domain decomposition code which allows efficient performance at large
problem size and large processor count to be achieved.

The particle suspension problem in LB combines two types of calculation commonly found in numerical
computation. First, there is a (regular) lattice based problem of the type typically encountered in finite-difference
implementations of CFD. Here, it is relatively easy to produce a static domain decomposition based on the lattice
which will provide good load balance and remain fixed for the duration of the calculation. Second, there is a freely
moving particle component similar to that found in classical molecular dynamics (MD) or other methods such as
smoothed particle hydrodynamics [9]. Domain decomposition here tends to favour unstructured and dynamic methods
which can maintain load balance for moving, and inhomogeneous, distributions of particles. (The exact approach taken
might depend upon the nature and range of inter-particle forces, an important consideration in MD-like calculations.)
In modelling moving particles which interact with the lattice there is a degree of tension between these two approaches.
However, the fact that the particles couple to the lattice through BBL favours a regular decomposition based on the
lattice; this is the approach taken here.

The paper is organised as follows. Section 2.1 provides an overview of the lattice Boltzmann method pertinent to
the present work. Section 2.2 introduces the cell list as a basis for the domain decomposition and Section 2.3 describes
the domain decomposition itself. Section 2.4 gives a detailed description of the parallel update algorithm. To test the
efficiency of the implemented algorithm, a number of benchmark problems are performed on two different machine
architectures. A summary is presented in Section 4.

2. Method

In this section, discussion is restricted to a parallel implementation with a single fluid LB model.

2.1. LB and bounce-back on links

The Navier–Stokes equations describe the time evolution of the hydrodynamic quantities related to fluid flow: the
density ρ(r; t) and the velocity u(r; t). The LB approach introduces the distributions fi (r; t), the moments of which
provide the hydrodynamic quantities. The time evolution of the distribution function is then described by a discrete
analogue of the Boltzmann equation:

fi (r + ci∆t; t + ∆t) − fi (r; t) =

∑
j

L i j

[
f j (r; t) − f eq

j (r; t)
]
. (1)
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