

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/cosrev

Survey

Catastrophic event phenomena in communication networks: A survey

Computer Science

Review

Christopher Dabrowski*

Mailstop 8920, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States

ARTICLE INFO

Article history: Received 11 February 2014 Received in revised form 12 September 2015 Accepted 5 October 2015 Published online 1 December 2015

Keywords: Internet Communication network Phase transition Percolation Graph theory

ABSTRACT

With the rise of the Internet, there has been increased interest in the use of computer models to study the dynamics of communication networks. An important aspect of this trend has been the study of dramatic, but relatively infrequent, events that result in abrupt and often catastrophic changes in network state. In the research literature, such catastrophic events have been commonly referred to as phase transitions. As interest in phase transitions in communication networks has grown, different approaches to the study of such phenomena have arisen. These approaches are based on differing goals of the researchers, differing investigative methods, and selection of different causal agents to study. While researchers using various approaches have made progress in understanding phase transition phenomena in communication networks, today there is only an incomplete understanding of the overall state of knowledge on this topic and no agreement on a common explanation of how such events occur in communication networks. To provide better understanding of the work done so far, this paper surveys research on phase transitions in communication networks and summarizes what has been learned. The paper identifies four different approaches taken by researchers studying this topic, describes the scope of the work done, identifies the contributions that have thus far been made, and characterizes differences in views on the nature of phase transitions in communication networks. An assessment is also made of weaknesses in the work that has been done, most notably the lack of realism in network models used to date. This survey discusses characteristics of real-world communication networks that need to be included in such models to improve their realism.

Published by Elsevier Inc.

Contents

1.	Introd	luction	11
	1.1.	Different approaches to the study of phase transitions in communication networks	12
	1.2.	Scope and definitions	13

* Tel.: +1 301 975 3249.

E-mail address: christopher.dabrowski@nist.gov.

http://dx.doi.org/10.1016/j.cosrev.2015.10.001 1574-0137/Published by Elsevier Inc.

	13	Phase transitions	14	
	1.4.	Organization of this paper		
2.	Relate	ed studies		
3.	Mode	ling catastrophic events in communication networks using percolation theory	16	
	3.1.	Basic concepts	17	
	3.2.	Using percolation theory concepts to study reliability of communication networks	18	
		3.2.1. Estimating the critical percolation threshold	19	
		3.2.2. Estimating the size of the giant connected component in scale-free graphs and other variables	19	
	3.3.	Summary	20	
4.	Trans	itions to catastrophic states from the epidemiologic point of view	20	
	4.1.	Key papers using percolation theory and the SIS model	21	
	4.2.	An approach based on eigenanalysis of, or using spectral methods on, the connected graph	22	
	4.3.	Incorporating realistic characteristics and other epidemiologically-based approaches	23	
	4.4.	Summary	24	
5.	Studie	es of percolation transitions caused by cascades	24	
	5.1.	Cascade studies based on, or related to, percolation theory	25	
	5.2.	Empirical studies of cascades	25	
	5.3.	Other cascade studies	27	
	5.4.	Summary	27	
6.	Transitions to catastrophic states resulting from increased load and congestion			
	6.1.	Simulation models	28	
	6.2.	Characterization of phase transitions	29	
	6.3.	Findings relating to self-similarity and long-range dependence	29	
	6.4.	Related studies of self-similarity in models of transmission control protocol links	31	
	6.5.	Modeling if traffic has a Poisson distribution or is self-similar: effects on phase transitions	31	
	6.6.	Summary	32	
	6.7.	Related congestion studies not involving global phase transitions	33	
7.	Discu	ssion and future work: the need for realistic models of communications networks	34	
	7.1.	Summary of state of knowledge	34	
	7.2.	Toward a theory of how catastrophic events occur in communication networks	34	
	7.3.	Making models more realistic	35	
		7.3.1. Realistic representation of internet-related protocols and procedures	35	
		7.3.2. Realistic topologies	35	
		7.3.3. User behavior	37	
	7.4.	Studying catastrophic behaviors using realistic models of communication networks	37	
8.	Concl	usions	38	
	Apper	ndix. Definitions of self-similarity and long-range dependence	39	
	Refere	ences	41	

1. Introduction

With the rise of the Internet,¹ there has been increased interest in the use of computer models to study the dynamics of communication networks. An important aspect of this trend has been the study of catastrophic events that result in an abrupt change in the macroscopic state of an entire network or in a distinguishable sub-network of significant scope. Of most impact are changes in which the network goes from a state in which it is operating normally and communications flow freely to a state where the network is severely degraded or effectively ceases to operate. Such catastrophic events have been commonly referred to in the literature as phase transitions from a global operational state to a failed state [1-5]. Events of this kind often can occur suddenly, providing no apparent warning before the rapid onset of a change that quickly permeates an entire network and alters its global state. In other cases, the events occur more gradually, suggesting the possibility that they can be predicted. These, and similar, events have been linked to different causes, including excessive load [1,6,7,2,8,3,4,9,10], propagation of computer viruses [11-14], and cascades caused by targeted attacks or failures [15–19]. Despite the potential of such unexpected events to cause widespread economic disruption, the occurrence of phase transitions in realworld communication networks is at best incompletely understood and methods for their prediction are unknown. By communication networks (real-world communication networks), this study refers to the Internet and the worldwide web (WWW), and significant subsets of these. The study excludes other types of networks (biological, social, voting, etc.) although references by some researchers may occasionally be made to these.

¹ Certain commercial products or company names are identified in this report to describe our study adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the products or names identified are necessarily the best available for the purpose.

Download English Version:

https://daneshyari.com/en/article/470085

Download Persian Version:

https://daneshyari.com/article/470085

Daneshyari.com