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Abstract

A finite element method is proposed for investigating the general elastic multi-structure problem, where displacements on
bodies, longitudinal displacements on plates, longitudinal displacements and rotational angles on rods are discretized using
conforming linear elements, transverse displacements on plates and rods are discretized respectively using TRUNC elements and
Hermite elements of third order, and the discrete generalized displacement fields in individual elastic members are coupled together
by some feasible interface conditions. The unique solvability of the method is verified by the Lax–Milgram lemma after deriving
generalized Korn’s inequalities in some nonconforming element spaces on elastic multi-structures. The quasi-optimal error estimate
in the energy norm is also established. Some numerical results are presented at the end.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Elastic multi-structures are usually assembled from elastic substructures of the same or different dimensions
(bodies, plates, rods, etc.) with proper junctions, which are widely encountered in engineering applications. In the
past few decades, many researchers have been interested in mathematical modeling and numerical solutions for
simple elastic multi-structures composed of only two elastic members [1–10]. However, there are few considerations
about the general elastic multi-structure problem. Feng and Shi [11,12] established mathematical models for general
elastic multi-structures via the variational principle, after reasonable presentation for the interface conditions among
substructures. The corresponding mathematical theory was developed in [13] by Huang, Shi, and Xu. In this paper, we
plan to propose and analyze a finite element method for investigating the general elastic multi-structure problem. We
mention the following words of Ciarlet to show the importance of such studies: “A challenging program consists in
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numerically approximating the mathematical models of elastic multi-structures that comprise many substructures.” [4,
p. 180].

Let there be given N3 body members Ω3
:= {α1, . . . , αN3}, N2 plate members Ω2

:= {β1, . . . , βN2}, and N1 rod
(beam) members Ω1

:= {γ1, . . . , γN1}. They are rigidly connected to form an elastic multi-structure [12,13]:

Ω = {α1, . . . , αN3; β1, . . . , βN2; γ1, . . . , γN1}.

Assume that Ω fulfills the following four conditions:

1. Each body member α is a bounded polyhedron and each plate member β is a bounded polygon.

2. Ω is geometrically connected in the sense that for any two points in Ω , one can connect them by a continuous path
consisting of a finite number of line segments each of which belongs to some elastic member in Ω .

3. For any two adjacent elastic members A and B, the dimension of the intersection Ā ∩ B̄ can only differ from the
dimensions of these two members by one dimension at most; for example, a body member can only have body or
plate members as its adjacent elastic members.

4. Ω is geometrically conforming in the sense that if A and B are two adjacent elastic members in Ω with the same
dimension, then ∂A ∩ ∂B should be the common boundary of A and B.

We point out that the first condition is given for ease of exposition, and the second one is satisfied generally for
practical problems. But the remaining two conditions may not be satisfied for some elastic multi-structures. In this
case, one can transform the original structures into new ones satisfying such conditions by adding or changing some
individual elastic members; we refer the reader to [12] for details along this line.

We denote all proper boundary area elements of bodies by

Γ 2
:= {βN2+1, . . . , βN ′

2
} = Γ 2

1 ∪ Γ 2
2 ,

where Γ 2
1 := {βN2+1, . . . , βN2+M2} and Γ 2

2 := {βN2+M2+1, . . . , βN ′

2
}. Here Γ 2

1 consists of all external proper
boundary area elements while Γ 2

2 consists of all interfaces of bodies. Analogously, denote all proper boundary lines
of plates by

Γ 1
:= {γN1+1, . . . , γN ′

1
} = Γ 1

1 ∪ Γ 1
2 ,

where Γ 1
1 := {γN1+1, . . . , γN1+M1} and Γ 1

2 := {γN1+M1+1, . . . , γN ′

1
}. Here Γ 1

1 consists of all external boundary lines
while Γ 1

2 consists of all interfaces of plates. Denote all boundary points of rods by Γ 0
:= {δ1, . . . , δN0}, and all corner

points of proper boundaries of plates by Γ 0
3 := {δN0+1, . . . , δN ′

0
} (except those in Γ 0). Let Γ 0

= Γ 0
1 ∪ Γ 0

2 with

Γ 0
1 := {δ1, . . . , δM0}, Γ 0

2 := {δM0+1, . . . , δN0}.

Here Γ 0
1 consists of all external boundary points while Γ 0

2 consists of all common boundary points. An element of
Ω3,Ω2

∪ Γ 2,Ω1
∪ Γ 1, and Γ 0

∪ Γ 0
3 is called respectively a body, area, line, and point element.

We introduce a right-handed orthogonal system (x1, x2, x3) in the space R3, whose orthonormal basis vectors are
denoted by {ei }

3
i=1. With each elastic member in Ω , we associate a local right-handed coordinate system (xω

1 , xω
2 , xω

3 )

as follows. ({eω
i }

3
i=1 represent the related orthonormal basis vectors.) For a body member α ∈ Ω3, its local coordinate

system is chosen as the global system (x1, x2, x3), and let nα be the unit outward normal to the boundary ∂α of α.
For a plate member β ∈ Ω2, xβ

1 and xβ

2 are its longitudinal directions, and xβ

3 the transverse direction. Moreover,
along the boundary ∂β of β, a unit tangent vector tβ is selected such that {nβ , tβ , eβ

3 } forms a right-handed coordinate
system, where nβ denotes the unit outward normal to ∂β in the longitudinal plane, and eβ

3 the unit transverse vector
of β. For a rod line element γ ∈ Ω1, xγ

1 is the longitudinal direction, xγ

2 and xγ

3 are the transverse directions, and
the origin of the local coordinates is located at an endpoint of γ . For a line element γ ∈ Γ 1, let eγ

1 be a unit vector
representing the longitudinal direction of γ .
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