COMPUTER SCIENCE REVIEW 5 (2011) 163-203

journal homepage: www.elsevier.com/locate/cosrev

jII

available at www.sciencedirect.com s Cmputer
& Sn'em:e
| Review

-—

“e.* ScienceDirect

IFIRZ

Survey

Linear Temporal Logic Symbolic Model Checking

Kristin Y. Rozier

NASA Ames Research Center, Moffett Field, CA 94035, USA

ARTICLE INFO

Article history:

Received 11 February 2010
Received in revised form
26 June 2010

Accepted 29 June 2010

Keywords:

Linear Temporal Logic (LTL)
Symbolic Model Checking (SMC)
Verification

Formal Methods

ABSTRACT

We are seeing an increased push in the use of formal verification techniques in safety-
critical software and hardware in practice. Formal verification has been successfully used
to verify systems such as air traffic control, airplane separation assurance, autopilot,
CPU designs, life-support systems, medical equipment (such as devices which administer
radiation), and many other systems which ensure human safety. This survey provides a
perspective on the formal verification technique of linear temporal logic (LTL) symbolic
model checking, from its history and evolution leading up to the state-of-the-art. We unify
research from 1977 to 2009, providing a complete end-to-end analysis embracing a users’
perspective by applying each step to a real-life aerospace example. We include an in-depth
examination of the algorithms underlying the symbolic model-checking procedure, show
proofs of important theorems, and point to directions of ongoing research. The primary
focus is on model checking using LTL specifications, though other approaches are briefly

discussed and compared to using LTL.

Published by Elsevier Inc.

1. Introduction

Verification of a software or hardware system involves
checking whether the system in question behaves as it
was designed to behave. Design Validation involves checking
whether a system design satisfies the system requirements.
(If it does not, it is desirable to find out early in the design
process!) Both of these tasks, system verification and design
validation, can be accomplished thoroughly and reliably
using formal methods, such as model checking. Model checking
is the formal process through which a desired behavioral
property (the specification) is verified to hold for a given
system (the model) via an exhaustive enumeration (either
explicit or symbolic) of all of the reachable system states and
the behaviors that cause the system to transition between
them. If the specification is found not to hold in all system
executions, a counterexample is produced, consisting of a trace
of the model from a start state to an error state in which

E-mail address: Kristin.Y.Rozier@nasa.gov.

1574-0137/$ - see front matter. Published by Elsevier Inc.
doi:10.1016/j.cosrev.2010.06.002

the specification is violated, providing a very helpful tool for
debugging the system design.

The time-honored techniques of simulation and testing,
both of which involve checking the system’s behavior on a
large set of expected inputs, also address similar questions
and are extremely useful debugging tools in early stages
of system design and verification. However, as a system is
refined, the remaining bugs become fewer and more subtle
and require more time to uncover. A major gap in the
process of using simulation and/or testing for verification
and validation is that there is no way to tell when these
techniques are finished (i.e. when all of the bugs in the system
have been found). In other words, testing and simulation
can be used to demonstrate the presence of bugs but not
the absence of bugs. There is not even an accurate way of
estimating how many bugs remain. Another open question
is that of coverage, of both the possible system inputs and
the system state space. Quite simply, it has been proven

http://dx.doi.org/10.1016/j.cosrev.2010.06.002
www.sciencedirect.com
www.sciencedirect.com
www.sciencedirect.com
http://www.elsevier.com/locate/cosrev
mailto:Kristin.Y.Rozier@nasa.gov
http://dx.doi.org/10.1016/j.cosrev.2010.06.002

164

COMPUTER SCIENCE REVIEW 5 (2011) 163-203

that testing and simulation cannot be used to guarantee an
ultra-high level of reliability within any realistic period of
time [1]. For some systems, this is an acceptable risk. For
those systems, it is enough to reduce the bug level below
a certain measurable tolerance, for example in terms of
frequency in time. For safety-critical systems, or other systems,
such as financial systems, where reliability is key because
failure is potentially catastrophic, we require an absolute
assurance that the system follows its specification via an
examination of all possible behaviors, including those that
are unexpected or unintended. This assurance is provided by
model checking.

While there are a range of different techniques for
formal verification, model checking is particularly well-suited
for the automated verification of finite-state systems, both
for software and for hardware. Once the system model
and specification have been determined, the performance
of the model checking step is often very fast, frequently
completing within minutes. The counterexample returned
in the case a bug is found provides necessary diagnostic
feedback. Furthermore, iterative refinement and re-checking
of the failed specification can provide a wealth of insight
into the detected faulty system behavior. Model checking
lends itself to integration into industrial design life-
cycles as the learning curve is quite shallow and easily
outweighed by the advantages of early fault detection. The
required levels of user interaction and specialized expertise
needed to effectively utilize a model checker are minimal
compared to other methods of formal verification. Moreover,
partial specifications can be checked, allowing verification
steps to occur intermittently throughout system design.
However, there is a trade-off between the high level of
automation provided by model checking and the high level
of expressiveness and control that may be required for
verification in some cases. For this reason, certain systems
benefit from the use of alternative verification techniques,
such as theorem proving, which involves logically deducing
the specification from the formal system description and a
set of axioms and inference rules. Still, model checking’s high
level of automation makes it a preferable verification method
where applicable since the performance time and quality of
insight obtained from a negative result when using theorem
proving for verification are highly dependent on the particular
skill-set of the person providing the proof.

Formally, the technique of model checking checks that a
system, starting at a start state, models a specification. Let M
be a state-transition graph (i.e. an automaton) representing
the system with set of states S and let s € S be the start
state. Let ¢ be the specification in temporal logic. We check
that M, s = ¢. In other words, we check that M satisfies
(“models”) ¢. This technique of temporal logic model checking
was developed independently by Clarke and Emerson [2] in
the United States and Quielle and Sifakis [3] in France in 1981.
Thus, 1981 is considered the birth year of model checking.

The primary focus of this paper is on model checking
using Linear Temporal Logic (LTL) specifications. LTL was
first introduced as a vehicle for reasoning about concurrent
programs by Pnueli in 1977 [4]. LTL model checkers follow the
automata-theoretic approach [5], in which the complemented
LTL specification —¢ is translated to a Biichi automaton,?

1 Biichi automata are formally defined in Section 3.4.

A-,, which is a finite automaton on infinite words that
accepts exactly all computations that satisfy the formula —¢.
A, is then composed with the model M under verification,
forming Ay -, [6]. Intuitively, any accepting path in Ay -,
represents a case where the system M allows a behavior
that violates the specification ¢. The model checker then
searches for such a trace of the model that is accepted
by the automaton Ay -, via a nonemptiness check. If an
accepting trace is found, it is returned as a counterexample.
If no such trace exists (i.e. the language Z(Ay, —,) = ¥), we
have proven that M, s & ¢. This process is summarized in
Table 1. The equivalent to the automata-theoretic approach
for branching temporal logics utilizes automata on infinite
trees and relies upon a reduction of satisfiability to the
nonemptiness problem for these automata [7].

LTL model checkers can be classified as explicit or symbolic.
Explicit model checkers, such as SPIN? [8] and SPOT? [9],
construct the state-space of the model explicitly and create
the automaton Ay, -, such that Z(Ay;, —y) = LM)N.L(A-y),
and |Ay, -l = O(M] - |A-y]), where vertical bars indicate
the size of an automaton in terms of number of states
and transitions. Next, the model checker searches for a
trace falsifying the specification. This search equates to a
nonemptiness check of the automaton Ay —,. The standard
algorithm for this task is Tarjan’s depth-first search algorithm
for finding strongly connected components in the state-
transition graph, which runs in time linear in the sum of
the number of states and transitions. (In practice slightly
more efficient algorithms are usually implemented [10-12].)
However, constructing and searching the state space in this
manner requires a considerable amount of space, even when
utilizing optimization techniques such as on-the-fly state
space construction [13-15]. Given that the size of the state
space required for model checking is the largest challenge
to its efficacy as a verification technique, utilizing techniques
that conserve space is vital.

The state explosion problem is widely agreed to be the
most formidable challenge facing the application of model
checking to large and complex real-world systems. In
short, the number of states required to model concurrent
systems grows exponentially with the number of system
components, constituting the main practical limitation of
model checking. Sequential hardware circuits with n input
variables and k registers require 2"k states to represent.
Even simple systems, like an n-bit binary counter, can
necessitate large state spaces (in this case, 2" states). In
general, a system with n variables over a domain of k
possible values requires at least k" states in the model
and reasoning over real-valued variables, which have infinite
possible values, results in a state-transition model with
infinitely many states. Unfortunately, the state explosion
problem is unavoidable in the worst case. However, a host
of techniques have been developed over the last three
decades that have successfully eased the problem for certain
types of systems. For example, sophisticated data structures,
clever algorithms for representing interleaving of concurrent
components (called partial order reduction [16]), and the use
of bisimulation equivalences [17] and compositional (also

2 http://spinroot.com/.
3 http://spot.lip6.fr/.

http://spinroot.com/
http://spot.lip6.fr/

Download English Version:

https://daneshyari.com/en/article/470207

Download Persian Version:

https://daneshyari.com/article/470207

Daneshyari.com

https://daneshyari.com/en/article/470207
https://daneshyari.com/article/470207
https://daneshyari.com/

