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a b s t r a c t

Influence diagrams have been widely used as knowledge bases in medical informatics and

many applied domains. In conventional influence diagrams, the numerical models of uncer-

tainty are probability distributions associated with chance nodes and value tables for value

nodes. However, when incomplete knowledge or linguistic vagueness is involved in the

reasoning systems, the suitability of probability distributions is questioned. This study

intends to propose an alternative numerical model for influence diagrams, possibility distri-

butions, which extend influence diagrams into fuzzy influence diagrams. In fuzzy influence

diagrams, each chance node and value node is associated with a possibility distribution

which expresses the uncertain features of the node. This study also develops a simulation

algorithm and a fuzzy programming model for diagnosis and optimal decision in medical

settings.

© 2007 Elsevier Ireland Ltd. All rights reserved.

1. Introduction and background

There are several important missions of a medical reasoning
system: diagnosis, prediction, treatment planning, etc. [1–3].
Among the tasks, diagnosis is the process of reconstructing
the past facts from the observed evidence; prediction is the
process of projecting the evidences from hypotheses; treat-
ment planning is reasoning about the costs and effects of
treatments on patients. Usually, medical practice requires var-
ious kinds of reasoning simultaneously. Hence, the capability
for multiple reasoning tasks is critical to the performance of
medical decision support systems. Besides, medical expert
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systems become more complex when considering the mecha-
nism of human bodies and their mutual interactions with the
environmental factors.

In medical informatics and other domains of applications,
e.g. business, finance, engineering, bioinformatics, etc., graph-
ical decision models such as Bayesian networks and influence
diagrams have been widely used as knowledge representation
and decision models [4–9]. Influence diagrams were originally
proposed as a compact representation of decision trees for
symmetric decision scenarios, and now regarded more as an
extension of Bayesian networks [8]. An influence diagram is
a directed acyclic graph with three types of nodes: decision
nodes, chance nodes, and value nodes. Decision nodes, shown
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Fig. 1 – The influence diagram for metastatic cancer.

as squares, stand for the actions available to the decision-
makers. Chance nodes, or random nodes, shown as circles,
represent random variables of interest. Value nodes, or utility
nodes, shown as diamonds, stand for the objectives or utilities
to be optimized [4,7–8].

An example of influence diagrams for metastatic cancer
and treatment is extended from Pearl [7] as Fig. 1. In Fig. 1,
there is one decision node T (“treat?”), which has two alterna-
tives to take: yes or no. Five chance variables are relevant to the
biological test and treatment problems: A (metastatic cancer),
B (increased total serum calcium), C (brain tumor), D (coma),
and E (severe headache). Finally, the utility function Q (quality-
adjusted life expectancy) is to be maximized. In influence
diagrams, the meanings of the arcs depend on their destina-
tions. Arcs pointing to value nodes represent approximate or
functional dependence. Arcs into decision nodes imply time
precedence and are informational; that is, they show which
variables will be known to the decision-makers before the
decision is made. Conventionally, the knowledge of chance
nodes is expressed with probability distributions while the
outcomes of the value node are projected with a value table.
This paper uses uppercase letters to represent the variables
and lowercase letters for its value; that is, x is the value of X.
Particularly, for the nodes having two states, this study uses
positive and negative to stand for their states; for example,
+a stands for A = 1 (with metastatic cancer) and −a stands for
A = 0 (without metastatic cancer).

However, when incomplete knowledge or linguistic vague-
ness is involved in the reasoning systems, the suitability
of probability distributions can be questioned. For example,
the states of severe headache and coma may fall into an
ambiguous spectrum instead of a specific value. Besides, the
quality-adjusted life expectancy may be hard to estimate due
to incomplete knowledge and other latent factors. In such
cases, the probability distributions and crisp utility become
inadequate for the uncertain causal effects in influence dia-
grams.

Yamada [10] addresses uncertain reasoning with multi-
ple causes and conditional possibilities on a causal network
model. However, the work focuses on the causal effect in two
layered networks. If the network is multi-layered, the com-
plexity may be hard to reduce. Besides, medical reasoning
systems need to provide diagnosis and optimal treatment

suggestion as well. Kao and Li [11] solve diagnostic reason-
ing and optimal treatment problems in influence diagrams
with fuzzy multi-objective programming, but they ignore
continuous cases and do not handle fuzzy random vari-
ables with possibilities [10,12–14]. Rodrı́guez-Muñiz et al. [15]
explore the statistical rules for modeling fuzzy random vari-
ables and utilities in influence diagrams mainly based on
the value-preserving transformations. Later, López-Dı́az and
Rodrı́guez-Muñiz [16] analyze how to evaluate influence dia-
grams with multiple value nodes in terms of fuzzy random
variables by dynamic programming. Both ignore diagnostic
reasoning.

To make up the gap between previous researches and prac-
tical demands of medical reasoning, this study is devoted to a
fuzzy influence diagram involving discrete as well as contin-
uous nodes, where uncertainties are modeled with possibility
distribution functions. This design also develops a simulation
algorithm and a fuzzy programming model for diagnosis as
well as optimization in the graphical model. In short, this
study provides the following features distinct from previous
investigations.

(a) Propose an alternative numerical model for influence
diagrams, possibility distributions, which can formulate
knowledge for discrete and continuous variables under
uncertainty and imprecise information.

(b) Treat discrete as well as continuous variables in influence
diagrams, so the constructs in medical settings will not be
limited to binary or discrete.

(c) Develop fuzzy reasoning algorithms for answering queries
in medical decision settings. The algorithms are appli-
cable to two-layered as well as multi-layered influence
diagrams. Different types of queries for medicine, e.g. diag-
nosis, prediction and optimal treatment can be done more
compactly and flexibly.

The remaining sections of this article are organized as fol-
lows. In Section 2, the author defines a fuzzy influence diagram
with possibility distributions as the numerical model under
uncertainty. Section 3 describes the problems and designs
the fuzzy reasoning algorithms for answering queries from
fuzzy influence diagrams. Section 4 presents the experimental
results. Finally, Section 5 gives the conclusions and the future
study suggestions.

2. Fuzzy influence diagrams

This section defines fuzzy influence diagrams, including nota-
tions and possibility distribution expression.

Generally, an influence diagram (ID) can be defined as
(2.1)–(2.3).

ID = (V, L, P), (2.1)

V = VD ∪ VR ∪ VU, (2.2)

L ⊂ V × V. (2.3)
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