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a b s t r a c t

In this paper we express the eigenvalues of real anti-pentadiagonal persymmetric Hankel
matrices with perturbed corners as the zeros of explicit rational functions. From these pre-
scribed eigenvalueswe give an orthogonal diagonalization for thesematrices and a formula
to compute its integer powers. In particular, an explicit expression not depending on any
unknown parameter for the determinant and the inverse of complex anti-pentadiagonal
persymmetric Hankel matrices with perturbed corners is provided.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Latterly, many authors have considered the problem of calculating, so explicit as possible, the integer powers of anti-
tridiagonal Hankel matrices (see, for instance, [1–9]). Themainmotivation for this issue comes from several areas of mathe-
matics such as numerical analysis, differential equations, linear dynamical systems or graph theory where the computation
of matrix powers is required.

One of the major purposes in this sequel is to establish an orthogonal diagonalization for real anti-pentadiagonal
persymmetric Hankel matrices with perturbed corners. To achieve this goal, we shall employ a method found by Fasino
in the late eighties called modification technique to obtain an orthogonal block diagonalization for these matrices, on one
hand, and use well-known results about symmetric matrices modified by a rank-one matrix (developed by Golub and
Bunch, Nielsen & Sorensen in the seventies) to locate the eigenvalues of real anti-pentadiagonal persymmetric Hankel
matrices with perturbed corners and calculate its eigenvectors at the expense of those prescribed eigenvalues, on the other.
Additionally, explicit formulae non-depending of any unknown parameter to compute the determinant and the inverse of
complex anti-pentadiagonal persymmetric Hankel matrices with perturbed corners (assuming its nonsingularity) are made
available.
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We say that an n × nmatrix is anti-pentadiagonal if it has the form

0 · · · · · · · · · · · · 0 αn βn cn
... . .
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αn−1 βn−1 cn−1 bn

... . .
.

. .
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α3 β3 c3 b4 . .
.

. .
. ...

β2 c2 b3 a4 . .
. ...

c1 b2 a3 0 · · · · · · · · · · · · 0



.

Throughout, we shall consider the following n × n anti-pentadiagonal matrix

Hn =



0 · · · · · · · · · · · · 0 a b r
... . .

.
a b c b

... . .
.

. .
.

b c b a
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0 a b c . .
.
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. .
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a b c b . .
.

. .
. ...

b c b a . .
. ...

r b a 0 · · · · · · · · · · · · 0



. (1.1)

2. An orthogonal diagonalization of the matrix Hn

We begin this section presenting an auxiliary result concerning to the eigenvalues and eigenvectors of a diagonal matrix
modified by a rank-onematrix which plays a central role along this paper. Let us point out that this problemwas extensively
studied in the past by some authors, particularly by Golub (see [10]) and Bunch, Nielsen & Sorensen (see [11]). Recall that in
the computation of the eigensystem of a diagonal matrix modified by a rank-one matrix, we shall assume the distinctness
of all eigenvalues of the diagonal matrix (i.e. of all entries of its main diagonal). Notwithstanding, if the diagonal matrix
has multiple eigenvalues then deflation can be used just as in [11] (see pages 32 and 33) to eliminate them converting the
original problem into another one where the eigenvalues are simple, thus ensuring that the hypothesis holds.

Lemma 1. Let n ∈ N, a, b, c, r ∈ R such that c ≠ a + r and

λk := −2a cos


(n − 1)kπ
n + 1


− 2b cos


nkπ
n + 1


− c cos (kπ) , k = 1, . . . , n. (2.1)

(a) If n is even,

u =



2
√
n + 1

sin


π

n + 1


2

√
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3π
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...

2
√
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sin
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, v =



2
√
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sin


2π
n + 1
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√
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4π
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...
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√
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(2.2a)
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